
www.manaraa.com

www.manaraa.com

Software Engineering
with Reusable Components

www.manaraa.com

Springer-Verlag Berlin Heidelberg GmbH

www.manaraa.com

J. Sametinger

Software Engineering
with Reusable Components

With 55 Figures and 26 Tables

, Springer

www.manaraa.com

Dr. Johannes Sametinger
Institut fUr Wirtschaftsinformatik.
Johannes-Kepler-UniversWit Linz
Altenberger StraBe 69
A-4040 Linz, Austria

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme
Sametinger, Johannes:
Software engineering with reusable components/J. Sametinger.­
Berlin; Heidelberg; New York; Barcelona; Budapest; Hong Kong;
London; Milan; Paris; Santa Clara; Singapore; Tokyo: Springer,
1997
ISBN 978-3-642-08299-3 ISBN 978-3-662-03345-6 (eBook)
DOI 10.1007/978-3-662-03345-6
This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfIlm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Vedag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1997

Originally published by Springer-Verlag Berlin Heidelberg New York in 1997.
Softcover reprint of the hardcover 1st edition 1997

The use of general descriptive names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover Design: Kunkel + Lopka Werbeagentur, Heidelberg
Typesetting: Camera ready by the author
SPIN 10571647 33/3142 - 5 4 3 2 1 0 - Printed on acid-free paper

www.manaraa.com

Preface

Software is rarely built completely from scratch. To a great extent, existing
software documents (source code, design documents, etc.) are copied and
adapted to fit new requirements. Yet we are far from the goal of making
reuse the standard approach to software development.

Software reuse is the process of creating software systems from existing
software rather than building them from scratch. Software reuse is still an
emerging discipline. It appears in many different forms from ad-hoc reuse to
systematic reuse, and from white-box reuse to black-box reuse. Many different
products for reuse range from ideas and algorithms to any documents that
are created during the software life cycle. Source code is most commonly
reused; thus many people misconceive software reuse as the reuse of source
code alone. Recently source code and design reuse have become popular with
(object-oriented) class libraries, application frameworks, and design patterns.

Software components provide a vehicle for planned and systematic reuse.
The software community does not yet agree on what a software component
is exactly. Nowadays, the term component is used as a synonym for object
most of the time, but it also stands for module or function. Recently the
term component-based or component-oriented software development has be­
come popular. In this context components are defined as objects plus some­
thing. What something is exactly, or has to be for effective software develop­
ment, remains yet to be seen. However, systems and models are emerging to
support that notion.

Systematic software reuse and the reuse of components influence almost
the whole software engineering process (independent of what a component is).
Software process models were developed to provide guidance in the creation
of high-quality software systems by teams at predictable costs. The original
models were based on the (mis)conception that systems are built from scratch
according to stable requirements. Software process models have been adapted
since based on experience, and several changes and improvements have been
suggested since the classic waterfall model. With increasing reuse of software,
new models for software engineering are emerging. New models are based
on systematic reuse of well-defined components that have been developed in
various projects.

www.manaraa.com

vi

Developing software with reuse requires planning for reuse, developing for
reuse and with reuse, and providing documentation for reuse. The priority
of documentation in software projects has traditionally been low. However,
proper documentation is a necessity for the systematic reuse of components.
If we continue to neglect documentation we will not be able to increase pro­
ductivity through the reuse of components. Detailed information about com­
ponents is indispensable.

Software Engineering with Reusable Components is divided into four main
parts. They cover the topics software reuse, software components, software
engineering and software documentation. These four parts are complemented
by an introductory and a concluding chapter. The introductory chapter intro­
duces the notions of software reuse and software component. The concluding
chapter summarizes the subject matter and provides concluding remarks on
the limits of component reuse and its prospects. In the following synopsis we
briefly sketch the contents of the four main parts.

Part I: Software Reuse
Even though software reuse has been practiced in one form or another
over many years, it is still an emerging discipline. In the first part of the
book we give a comprehensive overview of the subject, describing bene­
fits and obstacles to software reuse as well as various aspects like reuse
techniques and reuse products. Nontechnical aspects like legal, economic,
measurement and organizational issues are covered as well. The main fo­
cus of the book is on technical aspects of software reuse, especially reuse
of software components. However, this part also contains information
about other forms of reuse and distinguishes them.

This part of the book provides the reader with a clear understand­
ing of what software reuse is, where the problems are, what benefits we
can expect, the activities it encompasses, and which different forms of
software reuse exist.

Part II: Software Components
In the second part of the book we give an extensive introduction to soft­
ware components. We provide a classification of components and compo­
sition techniques. This classification goes beyond source code components
and also covers aspects from the area of distributed computing and em­
phasizes the importance of open systems and standards. There is more
to software components than functions and classes. Like software reuse,
software components go beyond source code. Components cover a broader
range than frameworks and patterns do. We give examples of successful
component reuse and evaluate them by using the suggested classification
scheme.

This part of the book gives the reader an overview of software com­
ponents, the different kinds of components and their compositions, a

www.manaraa.com

vii

taxonomy for components and compositions, and examples of successful
component reuse.

Part III: Software Engineering
Software engineering covers activities that are necessary to develop a
software system. The reuse of software components has consequences for
the way we develop systems. Software life cycles have been influenced by
many new developments that resulted in modified models like the risk­
based spiral model. Software reuse introduces new activities, like domain
analysis, and changes existing ones, e.g., design activities. Developing
with reuse and developing for reuse are the new challenges as compared
to developing systems from scratch to meet certain requirements.

This part of the book gives the reader an introduction to software en­
gineering and software process models. Chapters on domain engineering,
component engineering and application engineering depict consequences
of and influences from the systematic reuse of software components.

Part IV: Software Documentation
Software documentation fulfills the vital function of retaining and trans­
ferring knowledge about various aspects of software systems. We cover
the part of the documentation that is affected by the reuse of software
components, i.e., system documentation. On the one hand, system docu­
mentation has to consider the information needs of software reusers. On
the other hand, the reuse of software components suggests the reuse of
documentation as well.

This part of the book gives the reader an introduction to software docu­
mentation in general and details consequences for system documentation
that result from the reuse of software components.

Software Engineering with Reusable Components is intended for readers at
universities as well as in industry. Any readers who are interested in software
reuse in general and in component reuse and component-oriented software
engineering in particular will find useful information in this book. Readers
can expect to gain a comprehensive overview of software reuse and software
components and their influences on software engineering and software docu­
mentation.

www.manaraa.com

viii

Acknowledgement. Many people have contributed to the creation of this book. It is
impossible to mention them all, but the following persons and organizations have
particularly contributed to this work.

- Prof. Gustav Pomberger has been a source of support and encouragement
throughout the whole project.
Prof. Bart Childs and Prof. William Lively made it possible for me to visit Texas
A&M University in 1995. During this research visit we had discussions on many
aspects of software engineering.
Prof. Bart Childs has been especially generous with his support. We worked
together on several aspects of documentation and literate programming that are
described in this book. Bart Childs also introduced me to ~TEYC, which I am glad
I used for the creation of this manuscript.
Prof. Steve Reiss enabled my research visit at Brown University in 1996. He
was very helpful in providing a productive environment and in considering and
integrating documentation features into his programming environment.

- Prof. Peter Wegner has been available for discussions at Brown University. He
made me rethink several aspects, especially about software components.

- Reinhold ptosch, one of my colleagues at the Johannes Kepler University of Linz,
has influenced my work by careful reading of the manuscript and by making
numerous comments and suggestions for improvements.

- Anonymous reviewers have carefully read early manuscripts and made numerous
suggestions for improvements.

- Bob Bach made many improvements to the style of this book and polished my
English. He also made helpful suggestions for improvements to the contents of
the book.
The Austrian Fonds zur Forderung der wissenschaftlichen Forschung has enabled
the research visits at Texas A&M University and at Brown University with their
grants JOI063-MAT and JOI236-MAT (Erwin-Schrodinger-Auslandsstipendium).
The Ch. Doppler Laboratory for Software Engineering in Linz has been funding
visits to conferences, workshops and universities. This has been important for
the exchange of thoughts and ideas in the research community.

- Many other colleagues at Texas A&M University, at Brown University and at
Johannes Kepler University of Linz have been supportive during the project of
writing this book.

I want to thank them all for their help and cooperation.

Johannes Sametinger
Linz, Austria
March 1997

www.manaraa.com

Table of Contents

1. Introduction.. 1
1.1 Software Components. 2
1.2 Software Reuse. 4
1.3 Structure of Book 5

Part I. Software Reuse

2. Software Reuse..... 9
2.1 Introduction and Motivation.. 9
2.2 Benefits of Software Reuse. .. 11
2.3 Obstacles to Software Reuse. .. 15
2.4 Summary.. 18

3. Technical Aspects of Software Reuse. .. 21
3.1 Reuse Facets. .. 22
3.2 Reuse Substances. .. 22
3.3 Reuse Scopes .. 23
3.4 Reuse Techniques. .. 24
3.5 Reuse Intentions 28
3.6 Reuse Products. 31
3.7 Summary.. 35

4. Nontechnical Aspects of Software Reuse. 37
4.1 Legal Issues. .. 38
4.2 Economic Issues. .. 39
4.3 Organizational Issues 40
4.4 Measurement Issues. .. 48
4.5 Summary.. 52

www.manaraa.com

x Table of Contents

5. Installing a Reuse Program.. 55
5.1 Steps to Install a Reuse Program. .. 55
5.2 Management Commitment.... 58
5.3 Reuse Motivation. 59
5.4 Third-Party Components. 61
5.5 Summary.. 63

Part II. Software Components

6. Software Components 67
6.1 Component Definition. .. 68
6.2 Component Interfaces. 71
6.3 Component Platforms. .. 76
6.4 Summary.. 82

1. Component Composition 83
7.1 Forms of Composition.. 83
7.2 Forms of Interoperation 98
7.3 Composition Mismatches 102
7.4 Summary .. 105

8. Component Attributes 107
8.1 Functionality .. 107
8.2 Interactivity ... 108
8.3 Interaction .. 110
8.4 Concurrency ... 110
8.5 Distribution ... 111
8.6 Forms of Adaptation 113
8.7 Quality Control .. 113
8.8 Summary.. 114

9. Component Taxonomy 117
9.1 Taxonomy ... 117
9.2 Related Work .. 122
9.3 Summary .. 128

10. Component Examples 129
10.1 VisualBasic: Reuse of Visual Controls 129
10.2 Java: Reuse on the World-Wide Web 131
10.3 Unix Filters: Reuse based on ASCII Pipes 133
10.4 FrameMaker: Reuse of an Application. 135
10.5 Field: Reuse in a Programming Environment 136
10.6 Summary .. 138

www.manaraa.com

Table of Contents Xl

Part III. Software Engineering

11. Software Engineering .. 143
11.1 Software Management. .. 143
11.2 Software Specification 145
11.3 Software Design .. 145
11.4 Software Implementation 146
11.5 Software Testing 147
11.6 Software Maintenance 148
11.7 Summary .. 149

12. Software Process Models 151
12.1 Waterfall Model .. 151
12.2 Exploratory Model 153
12.3 Prototyping Model 155
12.4 Spiral Model ... 156
12.5 Twin Life Cycle .. 157
12.6 Summary .. 158

13. Domain Engineering 159
13.1 Domain Analysis 160
13.2 Domain Analysis Activities 163
13.3 Domain Analysis Methods 166
13.4 Foda: Feature-Oriented Domain Analysis 166
13.5 Domain Implementation 168
13.6 Summary .. 168

14. Component Engineering 171
14.1 Component Development 171
14.2 Component Generalization 173
14.3 Component Certification 174
14.4 Component Repositories : 178
14.5 Component Classification 179
14.6 Summary .. 184

15. Application Engineering 185
15.1 Reuse-Driven Development 185
15.2 Component-Based Life Cycle 188
15.3 Domain Analysis and the Software Life Cycle 192
15.4 Summary .. 193

www.manaraa.com

xii Table of Contents

Part IV. Software Documentation

16. Software Documentation 197
16.1 Documentation Categories 197
16.2 User Documentation 198
16.3 System Documentation 199
16.4 Process Documentation 200
16.5 Summary .. 200

17. Reuse Documentation 203
17.1 Motivation .. 203
17.2 Reuse Manual. ... 206
17.3 Summary .. 209

18. Literate Programming 211
18.1 Concepts .. 211
18.2 Tool Support .. 212
18.3 Acceptance .. 214
18.4 Reuse Considerations 215
18.5 Summary .. 215

19. Reuse Measurement in Literate Programs 217
19.1 Motivation .. 217
19.2 Line and Word Runs 218
19.3 Case Study .. 220
19.4 Summary .. 224

20. Documentation Reuse 225
20.1 Motivation .. 225
20.2 Source Code Inheritance 226
20.3 Documentation Inheritance 227
20.4 Summary .. 231

Part V. Closing

21. Conclusion ... 235
21.1 A Paradigm Shift 235
21.2 Limits of Component Reuse 237
21.3 Prospects .. 239

References 241

Glossary 251

Index ... 263

www.manaraa.com

List of Figures

I Software Reuse

4.1 Ad-hoc reuse. .. 42
4.2 Repository-based reuse. .. 42
4.3 Centralized reuse. .. 43
4.4 Domain-based reuse .. 44
4.5 Lone producer ... 45
4.6 Nested producer. .. 45
4.7 Pool producer. .. 46
4.8 Team producer. 46
4.9 Sample system with five components. 49
4.10 Reuse maturity. .. 51

5.1 Steps to install a reuse program. .. 56

II Software Components

6.1 Applications using Tcl/Tk .. 75
6.2 Dependent platforms of a component 76
6.3 Independent platforms of a component .. 77

7.1 Object management architecture. .. 93
7.2 Monolithic application. .. 96
7.3 Component application. .. 96
7.4 Component interoperation 100

9.1 Reusable software components (taxonomy) 121
9.2 Booch's taxonomy of reusable components 123
9.3 Kain's component category combination 125
9.4 Active and passive components 126
9.5 Wegner's taxonomy of software components 127

10.1 Unix pipes and filters 134
10.2 FrameMaker with clients 136
10.3 Architecture of the Field environment 137

www.manaraa.com

xiv List of Figures

III Software Engineering

12.1 Classic software life cycle (waterfall model) 152
12.2 Exploratory software development 154
12.3 Prototyping .. 155
12.4 Boehm's spiral model 157
12.5 Twin life cycle ... 158

13.1 Context of domain analysis 160
13.2 Steps of domain analysis 163

14.1 Excerpt from Dewey decimal order classification 180
14.2 Taxonomy of indexing vocabularies 183

15.1 Development with reuse 186
15.2 Reuse-driven development 187
15.3 Reuse spiral ... 190
15.4 Software evolution .. 191
15.5 Domain analysis and the software life cycle 192

IV Software Documentation

16.1 Documentation structure 202

17.1 Structure of a reuse manual 210

18.1 Literate program excerpt 213
18.2 Architecture of the Web system 213
18.3 Source of literate program excerpt 214

19.1 Reuse measurement based on line and word runs 218
19.2 Sample paragraph comparison 219

20.1 Source code inheritance 226
20.2 Documentation inheritance 227
20.3 Documentation abstraction 228
20.4 Abstract manual page 229
20.5 Sample (print) output with references 230
20.6 A view of user documentation 230
20.7 Views for system documentation 231
20.8 Documentation hierarchy 232

www.manaraa.com

List of Tables

I Software Reuse

3.1 Facets of software reuse. .. 22
3.2 Compositional reuse vs. generative reuse 29

4.1 Characteristics of reuse maturity levels. .. 48

5.1 Software reuse at various levels. .. 62

II Software Components

6.1 Examples of component platforms. .. 77
6.2 Examples of execution platforms 78
6.3 Examples of composition platforms 79

7.1 Comparison of integrated environments [Rei95a)... 99
7.2 Interoperability matrix 101

8.1 Properties of functions and objects [Weg93) 109
8.2 Attributes of components 115

9.1 User interface levels ... 118
9.2 Data interface levels .. 118
9.3 Composition categories 119
9.4 Platform categories ... 120
9.5 Kain's component categories and values 123

10.1 Components of examples 138
10.2 Interfaces and platforms of example components 139
10.3 Attributes of example components 140

III Software Engineering

13.1 Summary of the Foda method 169

www.manaraa.com

xvi List of Tables

14.1 Quality assurance techniques 177
14.2 Faceted classification example 181

IV Software Documentation

19.1 Line and word runs in sample paragraph comparison 220
19.2 Line and word lengths 221
19.3 Run-based reuse percentages in 'lEX vs. MetaFont 222
19.4 Summary of reuse percentages 222

www.manaraa.com

1. Introduction

Contents

1.1 Software Components............................... 2
1.2 Software Reuse...................................... 4
1.3 Structure of Book . 5

In the early days of computing software production started with simple pro­
grams by implementing algorithms. The problem domain that could be sup­
ported with software constantly grew. The systems to be built also became
constantly more complex, and the teams to work on a single software system
continued growing. Before long the term software crisis was coined.

Reuse of software components is becoming more and more important in a
variety of aspects of software engineering. Recognition of the fact that many
software systems contain many similar or even identical components that are
developed from scratch over and over again has led to efforts to reuse existing
components. Structuring a system into largely independent components has
several advantages. It is easy to distribute the components among various
engineers to allow parallel development. Maintenance is easier when clean
interfaces have been designed for the components, because changes can be
made locally without having unknown effects on the whole system. And, if
components' interrelations are clearly documented and kept to a minimum,
it becomes easier to exchange components and incorporate new ones into a
system.

Software reuse and software components have a major influence on the
structure of software systems as well as on the way we build them. Yet,
many questions are still unanswered. What are software components? What
are their properties that support reuse and adaptability? What are the re­
quirements for building evolving systems? What are the implications for the
software life cycle? What are the legal, economic and organizational conse­
quences? In this book we will provide answers to these important questions.

In the rest of this chapter we briefly give an introduction to what we
mean by software component (Section 1.1) and software reuse (Section 1.2).
Section 1.3 provides an overview of the structure of the book.

www.manaraa.com

2 1. Introduction

1.1 Software Components

We can reuse many things, for example, algorithms, designs, requirements
specifications, procedures, modules, applications, ideas, design patterns, ar­
chitectures. Where do we draw the line between software components and
other things, and why do we draw that line and concentrate on the reuse of
components only?

Components are artefacts that we clearly identify in our software systems.
They have an interface, encapsulate internal details and are documented sep­
arately. Recently component-based software development has become a buzz
word. In this context it is required that components be easily combined with
each other, especially without knowing from each other's existence. Many
considerations about the reuse of components are independent of what a
component is exactly. However, in Part II on Software Components we will
describe various forms of components. Subsequently, we will make some gen­
eral conisiderations on components, like questions of whether algorithms,
designs, or design patterns are components.

The primary intention in reusing components is that we can take a com­
ponent and integrate it into a software system. For example, we can take a
procedure and use it for some computations. We can also reuse an algorithm
that is described in a book on algorithms, like in the book on fundamental
algorithms by Knuth [Knu73a]. But we cannot simply take the algorithm
and integrate it into a system. We have to implement it first. Thus we reuse
the idea that is described in some pseudocode and tells us how we can solve
the problem. But we have to solve the problem ourselves using a specific
programming language and dealing with the special characteristics of this
language. If the algorithm were given already in a language that we can use
in a system, then we would have a component to reuse. In this context it does
not really matter whether we have the component given in the book only and
we have to type it in, or if it is available in digital form already. Reusing an
algorithm suffers from another drawback. The algorithm's documentation is
given in the book and not available in electronic form. This prohibits its
incorporation into the documentation of the whole system (unless someone
undergoes the tedious effort of typing the information from the book, which
might be even prohibited by copyright rules).

A software design is not a software component. We can reuse a design
by reusing a set of components, for example an application framework. The
framework is not one component as a whole, but consists of many components
that can be modified and extended individually. But the whole group reflects
a certain design which we reuse by integrating all these components into a
system. Design patterns have recently become popular. Are they reusable
components? They certainly can be reused, but they are not software com­
ponents. We cannot take a design pattern component and integrate it into
a system. However, we can take existing components and arrange them as
described by a design pattern. Or we might reuse a set of components that

www.manaraa.com

1.1 Software Components 3

realize a certain pattern. Design patterns describe how we can solve certain
problems by arranging components (usually classes) in a certain way. In this
sense they are like algorithms. They describe ideas, i.e., solutions to certain
problems that can be implemented in a specific way.

This book focuses on component reuse because components are a field
that promises a rich harvest in productivity through reuse. The reader might
argue that the reuse of software designs is more effective. Whether this is
true depends on what a component is. Reusing software designs might be
more effective if we restrict ourselves to the reuse of source code components.
However, in order to increase productivity, we have to see software compo­
nents in a broader perspective. By reusing a component we may well reuse
design. Many things can be encapsulated in components, which we strongly
recommend, because it facilitates their reuse. All the algorithms described in
various books on that topic can be realized as components. Object-oriented
technology provides the possibility to build generic components that are, for
example, capable of sorting whatever we want. There is no need to imple­
ment an algorithm every time we need to sort, and there is also no need
to customize these algorithms to whatever data structures we need to sort.
Components have yet another advantage; they can be documented and main­
tained. By using a component in various projects, we benefit from the fact
that it has to be maintained only once. Bugs need not be fixed redundantly;
documentation has to be written only once; and we avoid any inconsistency
problems that arise when we have similar code spread over many locations.
If we implement the same algorithm for various software systems, maybe for
slightly different data structures, we also have to invest redundant effort to
maintain their code, even though we successfully reused the algorithm.

Another important aspect of software components is that they must have
an interface. Simply copying some source code lines and pasting them into the
system to be built does not satisfy our conception of software components.
There must be some kind of abstraction, and reuse should be possible without
knowing the internals of the component. This is called black-box reuse (in
contrast to white-box reuse). In order to increase software productivity and
to ease software maintenance, black-box reuse should be the goal. Sometimes
performance considerations may require to know and modify the internals of
components, but this should be the exception rather than the rule.

Documentation is a necessity for reuse. Today reuse is still done by grab­
bing some pieces of code, studying and trying to understand them and then
modifying and integrating them. The term code scavenging applies to this
scenario. The abstraction level of reusable components has to rise in order
to considerably improve productivity. The reuse of plain source code should
be the exception. The more complex the components get, the more difficult
or impossible it becomes to reuse them. We want components that have the
proper information for retrieval and all the descriptions that are necessary
for adaptation and integration. This requires extensive documentation, and

www.manaraa.com

4 1. Introduction

we have to develop techniques and tools to support these efforts. Therefore,
we also cover documentation aspects in this book.

1.2 Software Reuse

Software components and software reuse complement each other perfectly.
Using software components to build software systems almost automatically
leads to software reuse. (But the use of software components is not sufficient
for software reuse.) And trying to reuse software almost automatically evolves
in the composition of software out of components. Even though, as is also
shown in this book, software reuse can be done without the involvement of
any components as well.

Reusing software has a much broader influence on software engineering
than one might initially think. Not only does it influence the construction
process, it fundamentally affects organizational structures and project struc­
tures, and it influences legal and economic issues of software engineering.
For software reuse to become a matter of fact, software life cycles have to
be adapted accordingly; important new activities like domain analysis come
onto the scene.

The reuse of legacy code poses new challenges. Maintaining it is hard
enough, reusing it and incorporating it into new systems is even more chal­
lenging, although it can boost productivity in building new software systems.
Requirements on software systems change constantly. Rebuilding new systems
every time requirements change considerably is neither feasible nor econom­
ical. We must be able to incorporate old components of systems, split them
into useful artefacts, and combine them with new developments. It is the
wrong approach to build gigantic monolithic systems that nobody fully un­
derstands and that are hard if not impossible to adapt to new environments
and situations.

Consider the US air traffic control system as an example. There have
been reports that the system is overdue for replacement by a new, modern
system [Joc95, Smo96]. The current system uses software from the 1970s and
runs on a vacuum-tube IBM 9020e mainframe dating back even a decade
earlier. The Federal Aviation Administration (FAA) has been working for
more than 10 years to replace the antiquated system, but without success.
The new system has more than a million lines of code but is riddled with
bugs. Due to the lack of reliability of the new system, the old system is still
in operation and continues to deteriorate. The old system cannot be adapted
to today's requirements. Meanwhile the new one's monolithic structure not
only makes it hard or impossible to put it into operation, but even if it did
do its job as required, it also will be hard to bring it up-to-date again with
ever-changing requirements.

We have to build evolving systems that are geared for change. This is
the only chance to keep pace with ever changing and increasing requirements

www.manaraa.com

1.3 Structure of Book 5

on software systems. We have been struggling with the software crisis for
decades. We should get ready to do a better job. Software systems must
be composed of components that can be reused and replaced. Instead of
replacing a whole system every twenty years, we have to continually add,
remove and replace components to adapt a system to changing requirements.
After twenty years everything in the system may be different, but this will
have happened gradually with small changes that are manageable.

It has been found that black-box reuse of source code components is in­
flexible and restrictive [Pri94]. Freeman points out that the reuse of source
components implicitly involves the reuse of analysis and design, and so misses
the opportunity of explicitly reusing this information [Fre87a]. While this is
certainly true, we must not conclude that software components per se are
worthless. On the contrary, we have to find and use higher abstractions for
components than pure source code and, above all, solve the incompatibility
problems. This book promotes the idea of reusing components and demon­
strates various forms and levels of components and interconnections. Software
reuse and/or software components will not solve all problems we encounter in
software engineering, but they will contribute to an important step towards
more flexible software systems that are constantly evolving and adapting. We
have to educate software managers to think further than the deadlines of indi­
vidual projects. Reusable, adaptable software components rather than large,
monolithic applications are the key assets of successful software companies.

1.3 Structure of Book

The book is divided into four main parts: Part I on Software Reuse, Part II
on Software Components, Part IlIon Software Engineering, and Part IV on
Software Documentation. The parts are independent of each other and can
be read in any order. The four parts are complemented by this introduction
and a conclusion in Chapter 21 (the only chapter in Part V).

- Part I: Software Reuse
Chapter 2 gives an introduction to software reuse and describes benefits
of and obstacles to software reuse. Technical aspects of software reuse are
described in Chapter 3. Nontechnical aspects like legal and organizational
issues follow in Chapter 4. Finally, Chapter 5 explains how to install sys­
tematic reuse in a company.

- Part II: Software Components
In Chapter 6 component definitions, component interfaces, and component
platforms are discussed. Chapter 7 describes forms of component composi­
tion and interoperation. Attributes of components are discussed in Chap­
ter 8. Chapter 9 discusses existing component taxonomies and proposes
a new classification based on the contents of the previous chapters. In

www.manaraa.com

6 1. Introduction

Chapter 10 samples of successful component reuse are given and classified
according to our proposed classification.

- Part III: Software Engineering
Chapter 11 provides a general introduction to software engineering. Chap­
ter 12 covers software process models. Domain engineering, an important
activity for software reuse, is depicted in Chapter 13. Chapter 14 con­
tains aspects of component engineering (development for reuse). Finally, in
Chapter 15 application engineering (development with reuse) is described.

- Part IV: Software Documentation
The fourth part focuses on documentation aspects. In Chapter 16 we give
a general introduction to software documentation. Documentation for the
purpose of reuse is described in Chapter 17. Literate programming, an
important concept for consistent and complete documentation is described
in Chapter 18. In Chapter 19 we present a case study that has been done
to demonstrates the importance of reuse in documentation. In Chapter 20
a method to systematically reuse documentation is depicted.

Chapter 21, the conclusion, discusses paradigm shifts and describes limits
and prospects of component reuse.

www.manaraa.com

Part I

Software Reuse

www.manaraa.com

2. Software Reuse

Contents

2.1 Introduction and Motivation... 9
2.1.1 Reuse Definitions 10
2.1.2 Motivation.. 10

2.2 Benefits of Software Reuse... 11
2.2.1 Quality Improvements. .. 11
2.2.2 Effort Reduction. 12
2.2.3 Other Benefits. 13
2.2.4 Industry Examples 14

2.3 Obstacles to Software Reuse.... 15
2.3.1 Managerial and Organizational Obstacles. 15
2.3.2 Economic Obstacles 16
2.3.3 Conceptual and Technical Obstacles. 17

2.4 Summary.. 18

The term software crisis was coined in the late sixties to describe the in­
creasing burden and frustration of software development and maintenance.
Programmers have been reusing code, subroutines and algorithms since the
early days of programming. But all this has been done informally. McIlroy
introduced the concept of formal reuse through the software factory concept.
Academia got attracted to reuse in the late 1970s. In the 1980s large-scale
reuse programs were done. Several advances were made, including reposi­
tories, classification techniques, creation and distribution of reusable com­
ponents, reuse support environments and corporate reuse programs. More
recent work has addressed nontechnical factors: management, economics, cul­
ture and law [PF93j.

In this chapter we give an introduction to and motivation for software
reuse (Section 2.1) and describe its benefits (Section 2.2) and obstacles (Sec­
tion 2.3). A summary follows in Section 2.4.

2.1 Introduction and Motivation

Code scavenging, using source code generators, or reusing knowledge can
contribute to increased productivity in software development. The reuse of

www.manaraa.com

10 2. Software Reuse

life cycle objects, primarily code, is often done in an informal and haphazard
way. If done systematically, software reuse has many benefits.

In the subsequent two subsections we discuss definitions and motivations
for software reuse.

2.1.1 Reuse Definitions

Many different viewpoints exist of what software reuse is. We give a few
examples from the literature.

For Freeman reuse is the use of any information which a developer may
need in the software creation process [Fre87a]. Similarly Basili and Rombach
see software reuse as the use of everything associated with a software project,
including knowledge [BR88]. For Tracz reuse is the use of software that was
designed for reuse ['fra95]. Braun defines reuse as the use of existing software
components in a new context, either elsewhere in the same system or in
another system [Bra94d].

An important aspect is whether software to be reused may be modified.
Cooper defines software reuse as the capability of a previously developed
software component to be used again or used repeatedly, in part or in its
entirety, with or without modification [Coo94]. Lim mentions work products
(i.e., products or by-products ofthe software development process, e.g., code,
design, test plans) that are to be used in the development of other software
without modification [Lim94]. We adopt Krueger's general view of software
reuse [Kru92]:

Software reuse is the process of creating software systems from exist­
ing software rather than building them from scratch.

Additionally, we affirm McIlroy's vision of reuse: the goal is the use of off­
the-shelf components as building blocks in new systems with modifications
occurring in a controlled way.

It is not always possible to simply reuse components. Development of
components and/or systems is still necessary. Other than compositional reuse,
e.g., generative reuse, is useful as well. But when we succeed in defining
standards for component composition, this kind of reuse will increase software
productivity considerably.

Research work in software reuse includes the development of new tech­
nology, but also the extraction of reusable parts from existing, possibly old
systems. Prieto-Diaz has documented a historical overview of software reuse
and described the evolution of a definition [Pri94].

2.1.2 Motivation

Hardware engineers have succeeded in developing increasingly complex and
powerful systems. Of course, hardware engineering cannot simply be com­
pared with software engineering. But software engineers, too, are faced with

www.manaraa.com

2.2 Benefits of Software Reuse 11

a growing demand for complex and powerful software systems. New prod­
ucts have to appear more rapidly and product cycles seem to decrease to
almost nothing. Advances in software engineering have contributed to in­
creased productivity. Examples include high-level programming languages,
object-oriented technology, prototyping-oriented software development, and
computer-aided software engineering.

Studies on reuse have shown that 40% to 60% of code is reusable from
one application to another, 60% of design and code are reusable in business
applications, 75% of program functions are common to more than one pro­
gram, and only 15% of the code found in most systems is unique and novel
to a specific application [Tha88a]. According to Mili et al. [MMM95] rates of
actual and potential reuse range from 15% to 85%.

Maximizing the reuse of tested (if not verified or certified) source code
and minimizing the need to develop new code alone can bring improvements
in cost, time and quality, and reusing source code is only the (low-level)
beginning of reuse. Practicing reuse systematically requires additional effort,
e.g., managerial and organizational changes.

Although systematic software reuse is not the concept to solve all prob­
lems, it promises to have positive impacts on development costs, productivity,
functionality, quality, reliability, portability, efficiency and maintainability of
software. This is discussed in more detail in the next section.

2.2 Benefits of Software Reuse

Software reuse has a positive impact on software quality, as well as on soft­
ware costs, and productivity. Reuse benefits have been treated in the liter­
ature many times, for example, in the Encyclopedia of Software Engineer­
ing [Bra94d], in the NATO Standards for Software Reuse [Bra94a, Bra94b,
Bra94c], in Ph.D. disserations [Tai93], and in various overviews of software
reuse, i.e., in journals [MMM95], in reuse books [Kar95, SPM94], and in
software engineering books [Som92].

In the following we elaborate on quality improvements and effort reduction
in more detail. Examples from industry that demonstrate such benefits are
mentioned at the end of this section.

2.2.1 Quality Improvements

Software reuse results in improvements in quality, productivity, performance,
reliability and interoperability.

- Quality
Error fixes accumulate from reuse to reuse. This yields higher quality for
a reused component than would be the case for a component that is de­
veloped and used only once. However, this requires the administration and
maintenance of components and is not achieved by simply reusing.

www.manaraa.com

12 2. Software Reuse

- Productivity
A productivity gain is achieved due to less code that has to be developed.
This results in less testing efforts and also saves analysis and design labor,
yielding overall savings in cost. When reuse is being installed, productiv­
ity may decrease shortly due to increased learning effort and the need
to develop reusable components. This temporary decrease in productivity
should easily be compensated by a long-term increase.

- Performance
Extensive reuse can be worth the effort invested in optimizations. This may
yield better performance of a reused component than might be practical for
a component that is developed and used only once. However, generaliza­
tions that make components more reusable can have a negative influence
on overall performance. For example, Bardo et al. have reported an esti­
mated 15 to 25 percent penalty in load module size with minimal overhead
in execution for avionics simulator software [BEK+96].

- Reliability
Using well-tested components increases the reliability of a software sys­
tem. Furthermore, the use of a component in several systems increases the
chance of errors to be detected and strengthens confidence in that compo­
nent.

- Interoperability
Various systems can work better together if their interfaces are imple­
mented consistently. This is the case when they use the same components
for these interfaces. Even though written standards improve interoper­
ability, different implementations might differently interpret parts of these
standards.

Bauer provides an example of improved quality due to software reuse [Bau93].
The quality of reused components (numbers of errors per lines of code) was
about 9 times better during component test and about 4.5 times better during
system test. In another project there were even no errors found in reused com­
ponents during the entire life cycle of the project. The components reused in
these projects were macros implementing abstract data types. Unfortunately,
there is no information given on the amount of reuse.

2.2.2 Effort Reduction

Software reuse provides a reduction in redundant work and thus development
time, which yields to a shorter time to market. This is especially important
considering the importance of good timing, i.e., early availability for software
systems. Additionally, documentation and costs as well as team sizes can be
reduced.

- Redundant work, development time
Developing every system from scratch means redundant development of

www.manaraa.com

2.2 Benefits of Software Reuse 13

many parts like user interfaces, communication, basic algorithms, etc. This
can be avoided when these parts are available as reusable components and
can be shared, resulting in less development and less associated time and
costs.

- Time to market
The success or failure of a software product is very often determined by
its time to market. Using reusable components will result in a reduction
of that time. As much as a 42% reduction has been reported on a specific
project [Lim95].

- Documentation
Even though documentation is very important for the maintenance of a
system, it is often neglected. Reusing software components reduces the
amount of documentation to be written but compounds the importance of
what is written. Only the overall structure of the software system and the
newly developed components have to be documented. The documentation
of reusable components can be shared among many software systems.

- Maintenance costs
Fewer defects can be expected to occur when proven components have been
used, and less of the software system must be maintained. The reusable
components are maintained by a separate group rather than separately in
each software system.

- Training costs
Over time, software engineers become familiar with the reusable compo­
nents available for their development efforts. So they have a good working
knowledge of many components of these systems when they are starting to
design and develop new systems.

- Team size
Large development teams suffer from a communication overload. Doubling
the size of a development team does not result in doubled productivity.
If many components can be reused, then software systems can be devel­
oped with smaller teams, leading to better communication and increased
productivity.

2.2.3 Other Benefits

The support of rapid prototyping and expertise sharing are amongst addi­
tional benefits of software reuse.

- Rapid proto typing support
Reusable components can provide an effective basis for quickly building
a prototype of a software system. This provides the opportunity to get
customer feedback early in the life cycle, thus supporting the conception
of the requirements. This can also help to uncover hidden requirements.

www.manaraa.com

14 2. Software Reuse

- Expertise sharing
Good designs can only be learned from good designers. It is important
that software engineers study the designs of excellent peers in order to
improve their design skills. Software reuse supports this very naturally.
This does not mean that we should study the implementation details of
all the components we reuse; the interfaces alone can reveal important
information about how a component and its interoperability have been
designed.

Reuse benefits are not completely independent from each other, but rather
influence each other.

2.2.4 Industry Examples

Reuse benefits have been reported in various industrial settings.

- An empirical study from a NASA software production environment has
shown that modules reused without modifications (revisions) had less in­
teraction with other modules, simpler interfaces, less interaction with hu­
man users, and higher ratios of commentary compared to newly developed
or modified (revised) modules [SeI89). In this study 25 software projects
(ranging from 3,000 to 112,000 source code lines) were considered. An aver­
age of 32% of software had been reused or modified from previous systems.

- At Motorola software reuse is considered a candidate technology for initia­
tives and goals to improve productivity and quality [J0094).

- At Hewlett-Packard a reuse assessment of two reuse programs has indicated
higher quality (reduction in defect density ranging from 24% to 76%) and
a 40% to 57% increase in productivity [Lim94).

- IBM has formed the Reuse Technology Support Center, involving close to 30
of their sites worldwide. Their best programs report savings in the millions
of dollars, with reuse accounting for 20% to 30% of the software [TG93).

Other industry examples are cited by Braun [Bra94d):

- Raytheon Missile Systems has reported an average of 60% reuse and a 50%
increase in net productivity in new developments (1979).

- NEC Software Engineering Laboratory has reported a 6.7 to 1 productivity
improvement and a 2.8 to 1 quality improvement (1987).

- Fujitsu has experienced an improvement from 20% of projects on schedule
to 70% on schedule (1987).

- GTE has reported 14% reuse and savings of $1.5 million, with projected
figures of 50% reuse and savings of $10 million (1987).

- SofTech, Inc. has reported an increase in productivity to 10 to 20 times
the industry average (1987).

- Universal Defense Systems has reported 60% reuse in a system of 700,000
lines of Ada code (1991).

www.manaraa.com

2.3 Obstacles to Software Reuse 15

- Celsius Technology has experienced a 250% increase in productivity, pro­
jecting an additional increase of about 300% (1992).

Experience reports cited by Mili et al. also document increases in productivity
and quality [MMM95).

2.3 Obstacles to Software Reuse

Despite the benefits of software reuse, it is not as widely practiced as one
might assume. There are many factors that directly or indirectly influence
the success or failure of reuse. These factors can be of conceptual, technical,
managerial, organizational, psychological, economic or legal nature. In this
section we list examples of such obstacles and divide them into various groups,
even though sometimes an assignment to one of these groups is ambiguous.

In the literature obstacles to software reuse have been described by various
authors, e.g., Braun [Bra94d), Griss [Gri93), Horner [Hor93), Jones [Jon94]
and Prieto-Diaz [Pri93a].

The subsequent sections describe managerial, organizational, economic
and technical obstacles to software reuse.

2.3.1 Managerial and Organizational Obstacles

Reuse is not just a technical problem that has to be solved by software
engineers. Management support and adequate organizational structures are
equally important. Common reuse obstacles are:

- Lack of management support
Since software reuse causes up-front costs, it cannot be widely achieved in
an organization without support of top-level management. Managers have
to be informed about initial costs and have to be convinced about expected
savings.

- Project management
Managing traditional projects is not an easy task. We have even less experi­
ence with projects exploiting reuse. Making the step to large-scale software
reuse has an impact on the whole software life cycle.

- Lack of explicit procedures
Software development is a complex process involving many activities. Suc­
cessful software reuse has effects on the whole software life cycle, design
methods, project planning and estimating. Models for such processes are
used to determine various steps to be accomplished in a certain order. If
these models do not explicitly consider software reuse, it is likely that it
will not happen in practice.

www.manaraa.com

16 2. Software Reuse

- Inadequate organizational structures
Organizational structures must consider different needs that arise when ex­
plicit, large-scale reuse is being adopted. For example, a separate team may
be installed for gathering, maintaining and providing reusable components.

- Not invented here
People may feel hindered in their creativity and independence by reusing
someone else's software. They want to develop their own new software
rather than maintaining software from someone else. They may also be
biased against someone else's software through a lack of trust. This is
called the not-invented-here syndrome.

- Legal issues
The more widespread software reuse becomes, the more legal and business
issues have to be addressed, e.g. liabilities and data rights. Increased use
of third-party software increases the significance of these issues.

- Lack of management incentives
Lack of incentives prohibit managers from letting their developers spend
time in making components of a system reusable. Their success is often
measured only in the time needed for completing a project. Doing any
work beyond that, although beneficial for the company as a whole, di­
minishes their success. Even when components are reused by accessing
software repositories, the gained benefits are only a fraction of what could
be achieved by explicit, planned and organized reuse. It is not sufficient to
simply access components in a repository. Well-designed components have
to be systematically developed and used following a careful reuse-based
process [Gri93].

Nontechnical issues around software reuse are discussed in Chapter 4. For
example, more details on legal issues are given in Section 4.1 on page 38. More
details on organizational aspects can be found in Section 4.3 on page 40.

2.3.2 Economic Obstacles

Reuse can save money in the long run, but it is not for free. Costs associated
with reuse are [Tra94]:

- costs of making something reusable,
- costs of reusing it, and
- costs of defining and implementing a reuse process (installing reuse).

Reuse requires up-front investments in infrastructure, methodology, training,
tools and archives, with payoffs being realized only years later. Developing
components for reuse is more expensive than developing them for single use
only. Higher levels of quality, reliability, portability, maintainability, gener­
ality and more extensive documentation are necessary. Such increased costs
are not justified when a component is used only once. Constructing a set of

www.manaraa.com

2.3 Obstacles to Software Reuse 17

reusable components is not possible without long-term support from upper
management.

2.3.3 Conceptual and Technical Obstacles

Most research is being done on technical support for software reuse. Object­
oriented programming is an example of technological support for reuse. How­
ever, just using object-oriented technology is by far insufficient for effective
reuse.

- Difficulty of finding reusable software
Software cannot be reused unless it can be found. Reuse is unlikely to
happen when a repository does not have sufficient information about com­
ponents or when the components are poorly classified. Suppose we know
that someone has written a software component that exactly matches our
needs. Finding it is impossible unless we have a well-organized repository
containing that particular component with some means of accessing it.

- Nonreusability of found software
Easy access to existing software does not necessarily increase software
reuse. Unintentionally, software is seldom written in a way so that oth­
ers can reuse it. Modifying and adapting someone else's software can be­
come even more expensive than programming the needed functionality
from scratch.

- Legacy components not suitable for reuse
Reusing components is hard or impossible unless they have been designed
and developed for reuse. Simply gathering existing components from vari­
ous legacy software systems and trying to reuse them for new developments
is not sufficient for systematic reuse. Re-engineering can help in extracting
reusable components from legacy systems. However, the efforts needed for
the extraction and transformation to useful components might be consid­
erable.

- Object-oriented technology
It is widely believed that object-oriented technology has a positive influence
on software reuse. Unfortunately and wrongly, many also believe that reuse
depends on this technology or that adopting object-oriented technology
suffices for software reuse.

- Modification
Components will not always be exactly the way we want them. If modifi­
cations are necessary, we should be able to determine their effects on the
component and its previous verification results.

- Integration
Sometimes components are available with the functionality that is needed
for a new software system. Still if it is not possible to integrate components

www.manaraa.com

18 2. Software Reuse

into the system, they are of no use. Unfortunately most components are
ill-equipped to cope with integration requirements. Software components
must be constructed in a way that subsequent reuse can be efficient and
straightforward.

- Garbage reuse
Certifying reusable components to certain quality levels helps in minimizing
possible defects. Poor quality control is one of the major barriers to reuse.
A reusable component has to perform its claimed functions. We need some
means of judging whether the required functions match the functions that
are provided by a component.

More basic technical difficulties with software reuse have been addressed by
Taivalsaari [Tai93] and include:

- agreeing on what a reusable component constitutes,
- understanding what a component does and how to use it,
- understanding how to interface reusable components to the rest of a design,
- designing reusable components so that they are easy to adapt and modify

(in a controlled way), and
- organizing a repository so that programmers can find and use what they

need.

Risks of software reuse include the unavailability of technology and resources,
lack of management support, sluggishness of people to change and the insta­
bility of domains [GFW94]. Additionally, risks can evolve from legal aspects,
e.g., liability issues or repository agreements [Hub94].

Software risk analysis [Boe91J, legal advice and incremental introduction
of reuse programs (see Chapter 5) help in avoiding or reducing these risks.

2.4 Summary

Software reuse is the process of creating software systems from existing soft­
ware rather than building them from scratch [Kru92]. In this chapter we
have provided several other definitions of software reuse, various benefits,
and obstacles to reuse.

The most common benefits of software reuse are quality improvement
and effort reduction. Obstacles to reuse are of managerial, organizational,
economic and technical nature.

Card and Comer point out two fundamental mistakes that contribute
to failure in software reuse [CC94]. First, organizations treat reuse as a
technology-acquisition problem rather than a technology-transition problem.
Second, they fail to approach reuse as a business strategy. It is sufficient nei­
ther to buy some sort of reuse technology nor to tackle technical problems
only.

www.manaraa.com

2.4 Summary 19

The not-invent ed-here syndrome and a general resistance to change can
hinder successful software reuse. Software developers like to be creative and
feel pride in their own software. Managers feel more comfortable when their
project's success is completely controlled by themselves, and they do not de­
pend on outside resources [Bra94d]. The only way to overcome these obstacles
is to systematically install a reuse program (see Chapter 5).

www.manaraa.com

3. Technical Aspects of Software Reuse

Contents

3.1 Reuse Facets....... 22
3.2 Reuse Substances 22
3.3 Reuse Scopes. .. 23
3.4 Reuse Techniques................................... 24

3.4.1 Abstraction. 24
3.4.2 Compositional Reuse 24
3.4.3 Generative Reuse 26
3.4.4 Generation vs. Composition 28

3.5 Reuse Intentions 28
3.5.1 Black-Box Reuse. 29
3.5.2 White-Box Reuse 29
3.5.3 Glass-Box Reuse. 30
3.5.4 Generative Reuse 30
3.5.5 Black-Box vs. White-Box Reuse. 30

3.6 Reuse Products 31
3.6.1 Algorithms. .. 31
3.6.2 Function Libraries. 32
3.6.3 Class Libraries. .. 32
3.6.4 Software Architectures and Designs. 32
3.6.5 Framework Classes .. 33
3.6.6 Design Patterns. .. 34
3.6.7 Applications. .. 35
3.6.8 Documentation.. .. 35

3.7 Summary.. 35

Software reuse has many technical and nontechnical aspects, for example,
ad-hoc reuse, institutionalized reuse, black-box reuse, white-box reuse, source
code reuse, design reuse.

In this chapter we describe various technical aspects of software reuse.
Nontechnical aspects follow in Chapter 4. Section 3.1 covers reuse facets and
provides an overview of various aspects of reuse. Reuse substances, reuse
scopes, reuse techniques, reuse intentions, and reuse products are described
in Sections 3.2 to 3.6. A summary follows in Section 3.7.

www.manaraa.com

22 3. Technical Aspects of Software Reuse

Table 3.1. Facets of software reuse

Facet Examples

Substance
ideas, concepts, artifacts,
components, procedures, skills

Scope vertical, domain-specific, horizontal, general-purpose,
internal, external, small-scale, large-scale

Mode
planned, systematic, institutionalized,
ad-hoc, opportunistic, individual

Technique compositional, generative

Intention
black-box, white-box, glass-box,
as-is, by adaptation, modified

Product
specification, design, source code,
architectures, documentation, text

3.1 Reuse Facets

Prieto-Diaz identified six perspectives from which to view software reuse. The
resulting facets are [Pri93b]:

- Substance defines the essence of reused items.

- Scope defines the form and extent of reuse.

- Mode defines how reuse is conducted.

- Technique defines the approach that is used to implement reuse.

- Intention defines how elements will be used.

- Product defines what is reused.

Table 3.1 shows these facets with examples. Reuse substances, reuse scopes,
reuse techniques, reuse intentions, and reuse products are described in subse­
quent sections. Reuse modes are affected by nontechnical aspects and, there­
fore, are described in Chapter 4 (Section 4.3.1 on page 41).

3.2 Reuse Substances

The essence of reused items is manifold. For example, we mentioned earlier
that ideas and concepts are often taken (and reused) from books about algo­
rithms. Ideas and concepts can also be 'retrieved' from experienced software

www.manaraa.com

3.3 Reuse Scopes 23

engineers who had been asked for advice. Information about procedures and
skills can be represented in expert systems, but is also often reused on an
ad-hoc and individual basis.

Concentrating on the reuse of components does not mean excluding the
reuse of ideas and concepts. The reuse of a component automatically means
the reuse of ideas and concepts that are built into the component. The ad­
vantage is that reusers do not have to worry about them. They do not have
to understand the concepts involved in the development of the components,
yet they implicitly reuse them through the component. For example, reusing
the idea for hash tables requires a thorough understanding of the concepts
required in order to implement them. If a component already provides the
functionality of hash tables and exports a clean interface, we can simply reuse
the underlying ideas and concepts.

Freeman argues that with source code alone we miss the opportunity of
explicitly reusing analysis and design information [Fre87aj. We have to con­
sider higher levels of components that cover more than pure source code.
Naturally, not everything can be packed into components. Thus reusing com­
ponents does not cover all aspects of software reuse. For example, it is difficult
to reuse procedures and skills by means of components because they cover
some kind of meta-information. However, the reuse of components provides
prerequisites for planned and systematic reuse.

3.3 Reuse Scopes

The amount of possible software reuse depends on the degree of commonalty
among applications that share software. A domain is an area of activity or
knowledge containing applications that share a set of common capabilities
and data [STA93j. Domains are described in more detail in Chapter 13.

If the majority of applications are in a specific domain, a higher degree of
reuse is probable than among applications across a broad range of different
applications. Domain-specific reuse and general-purpose reuse are often called
vertical and horizontal reuse, respectively.

Another possible differentiation of scope is distinguishing between internal
and external reuse. Internal reuse means the..multiple use of a component
within a software system for which it was originally written. External reuse
is the use of a component originally written for another software system.

Small-scale reuse is reusing small code components like subroutines, func­
tions, modules, and classes. Compared to the efforts needed to build large
software systems, the net win is marginal. Unfortunately, small-scale soft­
ware reuse is an everyday occurrence, whereas large-scale software reuse too
often remains an elusive and unrealized goal. Large-scale reuse requires the
consideration of many nontechnical issues, as described in Chapter 4.

www.manaraa.com

24 3. Technical Aspects of Software Reuse

3.4 Reuse Techniques

Various techniques or approaches can be used in order to achieve software
reuse. Compositional reuse supports bottom-up development of systems from
a repository of available lower-level components; classification and retrieval is
important in this context. Generative reuse is often domain-specific, adopting
standard system structures (reference architectures or generic architectures)
and standard interfaces for components. A combined approach is also possi­
ble.

3.4.1 Abstraction

Abstraction is essential in any software reuse technique. As Wegner states,
abstraction and reusability are two sides of the same coin [Weg83]. Krueger
states that "without abstraction developers would be forced to sift through
a collection of reusable artifacts trying to figure out what each artifact did,
when it could be reused, and how to reuse it." [Kru92].

Raising abstraction levels is a major challenge in software engineering.
The relation between abstraction and reuse gives a first hint about the diffi­
culties we face in software reuse.

Every software abstraction has two levels: specification (what is done
by the abstraction) and realization (how is it done). The realization of one
level of abstraction is the specification of the next lower level of abstraction.
Every abstraction contains a hidden part (not visible in the specification), a
fixed part, and a variable part. The variable part maps into the collection of
possible realizations. The creator of an abstraction can decide in which part
to put certain information, e.g., the size of a stack could be variable, fixed
or hidden. The specification must contain all the information needed by the
reuse of its realization.

Finding concise abstractions for components is a difficult task. The best­
known successes are in application domains with application-specific, one­
word abstractions, e.g.: sine, matrix (in numerical analysis), stack, list (in
abstract data types).

3.4.2 Compositional Reuse

Compositional reuse is based on the idea of reusable components that (ide­
ally) remain unmodified in their reuse. Higher-level or more complex com­
ponents are built by combining lower-level or simpler components. Only if
needed components are not available and cannot be created by modifica­
tion of existing components are they built from scratch or constructed from
lower-level components. The components suitable for reuse are collected in
repositories.

Compositional reuse is based on component repositories (e.g., function
libraries) or on principles of organization and composition, like pipe archi­
tectures or the object-oriented construction of software systems.

www.manaraa.com

3.4 Reuse Techniques 25

Component repositories. Successful reuse requires having a wide variety
of high-quality components, proper classification and retrieval mechanisms,
sufficient and proper documentation of components, a flexible means for com­
bining components, and a means of adapting components to specific needs. In
an ideal scenario reused components are largely atomic and remain unmodi­
fied. However, often this ideal cannot be achieved and the components have to
modified and changed in order to fit the reusers' special needs. During com­
position components are regarded as passive elements that are combined by
predefined principles which are crucial for systems being built from existing
components.

Today, the nature of a reusable component technology strongly depends
on the programming languages used. Components can be reusable functions,
e.g., statistics libraries, numerical libraries, or packages, modules, subsystems
and classes. The latter can include data-centered artifacts like abstract data­
types.

Challenges in the context of repositories are techniques to locate com­
ponents efficiently, e.g., classification schemes, retrieval techniques, and to
integrate them in software systems. This leads to the next aspect of compo­
sitional reuse, component composition. Chapter 14 provides more details on
repositories and classification schemes.

Component composition. Software components exist in many different
forms. They cannot be arbitrarily assembled and expected to communicate
and cooperate. In order to enable the combination of components they must
rely on the same kind of composition technique.

Module interconnection languages and the Unix pipe mechanism are ex­
amples of possible composition of reusable components. The Unix pipe mech­
anism is one of the well-known examples of a simple, yet powerful composi­
tion and integration technique where complex programs can be built out of
simpler ones. The alliance of components is accomplished by connecting the
output of one component to the input of another [Ker84].

Incompatibilities of components are among the main hindrances of suc­
cessful component reuse. In Chapter 7 we deal with different forms of com­
position and interoperation and describe composition mismatches.

Code and design scavenging. Scavenging fragments from existing soft­
ware systems and using them as part of new software development is an
ad-hoc and unsystematic, although effective approach to reusing software
system designs and source code [Kru92]. In this scenario reused components
are fragments taken from various locations of other systems rather than self­
contained, tested and documented components from a repository. Neverthe­
less, it is a kind of composition, and experienced programmers can gain high
productivity increases. We distinguish between code and design scavenging:

- Code scavenging
Blocks of source code are copied from an existing system.

www.manaraa.com

26 3. Technical Aspects of Software Reuse

- Design scavenging
Large blocks of code are copied. Many of the internal details are deleted.
The global template of the design is retained.

There is no abstraction involved in scavenging. The developer is forced to
become closely involved with implementation details of the reused fragments.

3.4.3 Generative Reuse

Generative reuse is based on the reuse of a generation process rather than
the reuse of components. Large frame structures are used as invariants, i.e.,
reused without change. Variant functionality must be added to customize
the invariant parts. The components that are reused are not concrete and
self-contained as in the compositional approach. The parts to be reused are
incorporated into a program that generates reusable patterns.

Typical examples of this kind of reuse are generators for lexical analyzers,
parsers, and compilers (e.g., lex and yacc on the Unix platform), conventional
application generators (e.g., fourth-generation languages), expert system gen­
erators, and structure-oriented editor generators.

Generators that synthesize software from reuse libraries to construct sys­
tems for a target domain compose prefabricated, interchangeable components
and thus contain compositional aspects also (see Batory et al. [BST+94]).
Subsequently, we distinguish between application generators, language-based
generators, and transformation systems. Programming languages can be seen
as low level specification languages. This is briefly sketched at the end of this
section.

Application generators. Application generators reuse complete software
system designs. They are appropriate in application domains where [Kru92]:

- many similar software systems are written,
- one software system is modified or rewritten many times during its lifetime,

and/or
- many prototypes of a system are necessary to converge on a usable product.

Application generators allow inexperienced people to generate customized
applications. In application generators, reusable patterns exist in the genera­
tor itself in the form of source code. Application generators currently provide
only small coverage for software development. But the focus on narrow do­
mains is also an advantage. Highly productive creation of quality commercial
software with application generators has been reported [Lev86]. A survey of
application generators is given by Horowitz et al. [HKN85].

Language-based generators. Language-based generators provide a spec­
ification language that represents the problem domain and simultaneously
hides implementation details from the reuser. Specification languages allow
developers to create software systems using constructs that are considered

www.manaraa.com

3.4 Reuse Techniques 27

high-level relative to programming languages [Kru92]. They are also known
as executable specification languages.

Specification languages help in reusing implementation patterns of pro­
gramming languages, similar to programming languages that help in reusing
assembler patterns. These languages typically have mathematical abstrac­
tions that are not widely used in the conventional software life cycle. Spec­
ification languages are used to describe abstract specifications, from which
executable programs are automatically generated. Language-based generators
differ from application generators mainly in that they use general-purpose,
application-independent abstractions rather than application-specific ones.
The primary concern is development and modification efficiency rather than
high execution speed. This may eliminate them as development vehicles for
various of today's production systems, but they can be used as a basis for
rapid prototyping and validation of software systems.

The Setl optimizer is an example of this kind of generation [DFSS89]. It
is based on representing computations as operations on mathematical sets.

Transformation systems. With transformation systems, software is devel­
oped in two phases: describing the semantic behavior of a software system
and applying transformations to the high-level specifications. For example,
abstract programs are transformed into their concrete counterparts in an
approach described by Cheatham [Che89].

Martin distinguishes the subcategories skeleton approach, kitchen sink ap­
proach, parameterized approach, and stepwise refinement approach [Mar90]:

- Skeleton approach
In the skeleton approach, the reuser starts with a generic application skele­
ton and fills in details and missing parts. The generic part may cover many
aspects of an application, e.g., user interface details or event handling.

- Kitchen sink approach
The kitchen sink approach works the other way around. The reuser starts
with a detailed and extensive framework and prunes parts away that are
not needed for the current application.

- Parameterized approach
The parameterized approach provides certain parameters to modify the
resulting software.

- Stepwise refinement approach
In the stepwise refinement approach, reusers refine the software's behavior
in incremental steps.

The Draco system generates applications from domain-oriented specifica­
tions [Nei89]. It can be regarded as application generator and as transfor­
mation system that use patterns within transformation rules.

www.manaraa.com

28 3. Technical Aspects of Software Reuse

Programming languages. Programming languages such as C, C++ and
Ada are usually not treated as examples of software reuse. But their goals and
achievements have strong parallels to the current-day aspirations of software
reuse researchers [Kru92J.

In the same way as we regard language-based generators, application gen­
erators, and transformation systems in the context of software reuse, with
programming languages we do not reuse software itself, but rather we reuse
language patterns. The artifacts to be reused are assembly language patterns.
Of course, these languages provide only a relatively low level of abstraction.
However, they provide a factor of 5 speedup in writing source code [Bro75J.

As with generators, programmers use variant and invariant parts of the
abstraction and do not have to worry about all the assembly language details
that are actually reused. The compiler provides the transformation from the
specification (programming language) to the implementation (assembly or
machine language).

3.4.4 Generation VS. Composition

Generation-based systems have the advantage that the reused patterns can
be designed and implemented carefully by experienced programmers. But
they are applicable only to a certain domain and are typically restricted to
the reuse of source code. Also, they cannot be applied easily in all situations.
Often they are too general or to specific for applications under consideration.

Components are applicable to a wider variety of applications. Addition­
ally, they are more modular and self-contained and thus maintainable. Their
disadvantage is that they are seldom perfect or general enough. This might
lead to many modifications, which reduces productivity gains and can lead
to immense numbers of components in repositories.

Table 3.2 summarizes the comparison of compositional and generative
reuse (see Biggerstaff and Richter [BR89]). Compositional reuse provides the
more general approach. The generative approach is useful in specific domains
and can be built on top of components.

3.5 Reuse Intentions

Depending on whether the internals of a software component are visible to
reusers we speak of black-box or white-box reuse. If a component is a black
box we cannot modify its internals: we use it as is. White-box components
are usually modified, even though this is not necessarily the case. They offer
both as-is reuse and reuse by adaptation. The term glass-box reuse means
white-box visibility but black-box reuse.

www.manaraa.com

3.5 Reuse Intentions 29

Table 3.2. Compositional reuse vs. generative reuse

Reuse Composition Generation technique

Reused building blocks patterns
component

Nature of atomic and immutable, diffuse and malleable,
component passive active

component repositories, application generators,
Emphasis composition principles, language based generators,

(code/design scavenging) transformation systems

Examples function/class libraries, parser generators,
Unix filters 4th generation languages

3.5.1 Black-Box Reuse

Reusing a component as a black box means using it without seeing, knowing
or modifying any of its internals. The component provides an interface that
contains all the information necessary for its utilization. The implementation
is hidden and cannot be modified by the reuser. Thus reusers get the infor­
mation about what a component is doing, but they do not have to worry
about how this is achieved. The implementation can be changed without any
effects on reusers.

Usually a black box is reused as-is. Object-oriented techniques allow mod­
ifications of black boxes by making modifications and extensions to a compo­
nent without knowing its internals. This is one of the major contributions of
object-oriented programming to software reuse. However, components have
to be designed so that such modifications become viable.

3.5.2 White-Box Reuse

White-box reuse is the typical case in the unplanned ad-hoc reuse that is
still widespread today. It means reuse of components of which internals are
changed for the purpose of reuse. White boxes are typically not reused as
is, but by adaptation. They create more opportunities for reusers due to the
ease of making arbitrary changes. On the negative side of white-box reuse,
it requires additional testing and costlier maintenance. Unlike black boxes, a
new component derived by modifications to an existing component must be
regarded as a new component and thoroughly tested. Additionally, the new
component requires separate maintenance. If many copies of a component
exist with slight modifications, it becomes burdensome to fix errors that

www.manaraa.com

30 3. Technical Aspects of Software Reuse

affect all of them. If the changes made to a component are only minor, e.g., a
few variable renamings or changes in procedure calls, the term grey-box reuse
is also used.

3.5.3 Glass-Box Reuse

The term glass-box reuse is used when components are used as-is like black
boxes, but their internals can be seen from outside (see Goldberg and Ru­
bin [GR95]). This gives the reuser information about how the component
works without the ability to change it. But this information may be crucial
for understanding how certain tasks are carried out. It may also give the
reuser some confidence from being able to see inside the component and cap­
ture how it works. Additionally, getting internal information provides some
kind of knowledge transfer and, for example, can help in building new com­
ponents.

Glass-box reuse has its negative sides. It may lead to dependencies on
certain implementation details which become fatal when the internals of the
component are changed. Unfortunately, giving reusers detailed information
about a component's internals often serves as compensation of nonexistent
or insufficient documentation.

3.5.4 Generative Reuse

Generative reuse is itself a reuse technique, but it can be seen as kind of black­
box reuse [GR95]. Instead of picking one of several existing black boxes, a
component's specification is created and its implementation automatically
generated by a program generator. The program generator is a black box;
its internals are of no interest to the reuser. Also, the generated implemen­
tation will not be modified. If changes are necessary, they will be made in
the specification and the implementation is recreated. (In practice, however,
modifications to the generated implementation are sometimes made due to
shortcomings in the generator.)

3.5.5 Black-Box vs. White-Box Reuse

Black box reuse is more difficult to achieve than white-box reuse but promises
higher quality and reliability of the resulting software system. The potential
of customizing black-box components can increase their reuse potential but
has to be carefully considered and designed. Black-box components have the
advantage of possible verification and certification. Even though we are far
from having a market of verified and certified components, such attributes
will become essential in the future.

www.manaraa.com

3.6 Reuse Products 31

3.6 Reuse Products

There are many work products that can be reused, e.g., source code, doc­
umentation, designs, specifications, objects, text and architectures. Source
code is the most common reuse product. However, higher increases in pro­
ductivity will result from reusing higher levels of abstraction. This can mean
that source code is generated automatically from higher levels of abstrac­
tions. The abstraction level of the source code also plays a major role in the
benefit of the reuse process. For example, object-oriented programming tech­
niques allow the construction of application frameworks that facilitate not
only source code reuse but also design reuse. Design patterns have recently
emerged and help to reuse the knowledge of experienced designers of object­
oriented software systems. In the context of source code reuse, documentation
reuse also becomes important. This affects not only system documentation
for the source code but also specifications as well as user documentation and
project documentation.

Different categorizations for reuse products have been proposed, most of
them relying on one or more of the following factors [MMM95]:

- the stage of development at which the knowledge is produced and/or used,
e.g., design vs. implementation,

- the level of abstraction, e.g., source code vs. tools, and
- the nature of knowledge, e.g., artifacts vs. skills.

Without systematic planning, reuse seldom goes beyond the implementation
stage and the source code level. Types of reusable artifacts can comprise
data reuse (e.g., standardization of data formats), architecture reuse (e.g.,
standardization of design and programming conventions), design reuse (e.g.,
for common applications like GUI), and program reuse (e.g., executable code)
[Jon84].

In this section we give examples of what can be reused for software devel­
opment. The most prominent examples of today's reuse include algorithms,
function libraries, class libraries, application frameworks and design patterns.
Other examples include project plans, cost estimates, requirements, designs,
architectures, user documents and test cases. Components per se are dis­
cussed in detail in Chapter 6.

3.6.1 Algorithms

Algorithms have a long tradition of successful reuse. Numerous books contain
a variety of useful algorithms. A prominent example is Knuth's "The Art of
Computer Programming" [Knu73a, Knu73b, Knu73c]. Many of these books
contain algorithms and data structures in certain programming languages.
They allow the reuse of these algorithms with only minor modifications. Of­
ten they are depicted in some sort of pseudocode and have to be translated to

www.manaraa.com

32 3. Technical Aspects of Software Reuse

a specific programming language. As-is reuse is rarely possible. Often adap­
tations and modifications have to be made, especially concerning the data
structure to be processed by a certain algorithm. For example, an algorithm
in a book may depict sorting algorithms by sorting integer values. If customer
records have to be sorted, then slight modifications of the algorithms will be
necessary.

Advances in programming languages have made the need to adapt and
modify less painful. Generic implementations and templates make algorithms
work with different data structures without explicit modification. Concepts of
object-oriented programming allow the most elegant kind of algorithm reuse.
By inheritance, implemented algorithms can be made to work with objects
not foreseen at the time these algorithms were implemented. This evolution
in programming languages has brought a rise in the abstraction level from
the reuse of concepts and ideas to the reuse of source code without the need
for modifications (but still reusing the concepts and ideas).

3.6.2 Function Libraries

Functions are the most common form of reusable components. For many
programming languages, standard libraries have been defined, for example,
for input/output or mathematical functions.

A few decades ago languages had much functionality defined in the lan­
guage itself, e.g., PL/I. Later on, the trend was towards lean languages with
standard libraries for various functionalities, e.g., Modula-2.

There are many example of function libraries, from collections of standard
routines (e.g., the C standard libraries) to domain-specific libraries (e.g., for
statistics or numerical purposes).

3.6.3 Class Libraries

Class libraries are the object-oriented version of function libraries. Classes
provide better abstraction mechanisms, better modifiability and adaptability
than functions do. Reusability has greatly benefited from concepts like inher­
itance, polymorphism and dynamic binding. In many class libraries there are
classes devoted to generic data structures like lists, trees and queues.

The major problem with class libraries is that they consist of families of
related components. Thus members of different families have incompatible in­
terfaces. Often several families implement the same basic abstraction but have
different interfaces. This makes libraries hard to use and makes interchanging
components difficult. Also, most class libraries are not scalable [BST+94].

3.6.4 Software Architectures and Designs

A software architecture is the global structure of a software system with its
major subsystems, including the specifications of these subsystems and their

www.manaraa.com

3.6 Reuse Products 33

interrelationships. It includes the collection of components and their interac­
tions. A description of a software system's architecture usually contains the
collection of its components at the highest level of abstraction. For example,
if the system consists of independent processes, then the description of the
architecture contains these processes with a description of their functional­
ity and the interactions among them. If a software system runs as a single
process, then its subsystems are considered as being the architecture. These
can be modules and classes or subsystems containing several such modules
and/or classes. The next lower level is generally considered as being part of
the software design.

A series of common patterns for the global structure of software systems
has been successful and reused repeatedly. Such patterns include communi­
cating processes, hierarchical layers, pipes and filters, clients and servers, and
interpreters [SG94]. The reuse of software architectures is possible through
generic architectures for certain application domains. A high-level generic de­
sign for a family of applications can be defined to meet requirements within
the domain.

Software design incorporates the activities of creating the software archi­
tecture of a system plus decomposing software components. This is repeated
until the level of detail allows the coding of the specified components. The
steps involved include the design of the architecture of the whole system or
subsystems, component interfaces, component implementations, data struc­
tures and algorithms. Software design is a matter of practice and experience.
It is learned not from reading a book but from studying existing, well-designed
systems. Reuse of software design is mainly reuse of knowledge. However, with
application frameworks it is possible to reuse not only source code but also
the design (see below). Thus components are capable of supporting the reuse
of software design.

Software architectures and software designs complement each other in
that behind most design methods are preferred architectural styles. Design
methods can also evolve from a specific architectural style [Gar95].

3.6.5 Framework Classes

For large-scale reuse, isolated classes are small-scale primitives that are too
fine-grained. To boost productivity, systems have to be built out of large­
scale composites. Thus we have to focus on sets of classes that collaborate to
carry out a common set of responsibilities, rather than on individual classes.
Frameworks are flexible collections of abstract and concrete classes designed
to be extended and refined for reuse [Tai93]. Components of class libraries
can serve as discrete, stand-alone, context-independent parts of a solution to
a large range of different applications, e.g., collection classes. Components of
frameworks are not intended to work alone; their correct operation requires
the presence of and collaboration with other members of the framework com­
ponents [Tai93]. Reusers of framework classes "inherit" the overall design of

www.manaraa.com

34 3. Technical Aspects of Software Reuse

an application made by experienced software engineers and can concentrate
on the application's functionality. They do not have to worry about user
interfaces, window systems, event handling, refreshing, etc.

The major advantage of framework classes over library classes is that
frameworks are concerned with conventions of communication between the
components [LI93]. Today the combination of components from different class
libraries is the exception rather than the rule. This is because there is some
implicit understanding of how components work together. High cohesion and
low coupling increase the reusability of components. But unless the compo­
nent does have extensive functionality, it is required to cooperate and com­
municate with many others. In a framework this interaction is built in and
eases interaction of its components.

3.6.6 Design Patterns

Software design patterns capture the intent behind the design of a software
system. They standardize piecework to larger units. For example, many times
there exists a special arrangement of classes and/or objects in order to avoid
reuse errors.

A subsystem is a set of classes with high cohesion among themselves and
low coupling to classes outside the subsystem. Design patterns can correspond
to subsystems, but often they have a finer level of granularity. Design patterns
have been identified to avoid dependence on classes when creating objects,
on particular operations, on specific representation or implementation, on
particular algorithms, and on inheritance as the extension mechanism. De­
sign patterns have been described by various authors, e.g., Coad [Coa92J,
Gamma [Ge93], Gamma et al. [GHJV95] and Pree [Pre95].

Research work on design patterns is still going on, and it is not yet clear
which patterns will become widely accepted. Gamma et al. have presented
an extensive collection of design patterns [GHJV95]. These patterns promise
to be one further step in increasing the abstraction level in software devel­
opment. They can help both in improving the development process and in
recapturing design decisions behind the structure of certain parts in a system.

We see design patterns as a means of transferring design knowledge. Thus
design patterns provide an efficient means of studying and later reusing the
designs of experienced software engineers. Patterns can help to improve pro­
ductivity by shortening the learning curve for novice and intermediate pro­
grammers and by yielding simpler, more resilient systems [DS94]. In contrast
to methodologies that tell us how to do something, design patterns show us
how to do it. They are standard techniques for software development similar
to algorithms, which operate on a lower level.

www.manaraa.com

3.7 Summary 35

3.6.7 Applications

Entire applications can be thought of as components that provide well-defined
services. They can reference or embed other applications and invoke services
by sending messages. Besides production gains, reusing applications offers the
flexibility to customize environments and let users stick to their preferred
tools, e.g., the Emacs text editor. Applications are reused as black boxes.
They have to provide an interface to allow other applications to interact
with them, e.g., to send commands.

Increasing capabilities of applications to interoperate are providing alter­
natives to large monolithic applications. Composing applications from fine­
grained applications rather than building one big closed system provides
many possibilities for reuse.

3.6.8 Documentation

Documentation is an important part of a software system. We distinguish be­
tween product documentation and process documentation [Som92]. Product
documentation describes how to use a system (e.g., user interface description,
functional description, reference manual) and how it is implemented (e.g., sys­
tem architecture, design, component implementations). Process documenta­
tion describes the process of creation (e.g., plans, estimates, schedules).

Documentation is hard to reuse in a systematic way. The usual case is
copying a document and editing it. The reuse of components should involve
the reuse of their documentation as well. If components are integrated into
a software system, so should be their documentation. Chapter 20 describes
how this can be accomplished.

3.7 Summary

In this chapter we have described different views to reuse, including sub­
stances, scopes, modes, techniques, intentions and products. Technical as­
pects have been described in detail. Nontechnical aspects follow in Chapter 4.

The essence of reuse comprises ideas, artifacts, and skills. By reusing
components, which are artifacts, we cannot reuse any skills. But we are able
to reuse ideas and concepts, which, to some degree, can be incorporated into
components. The form and extent of reuse, defined by reuse scope, is strongly
dependent on nontechnical measures that are taken. The same holds for reuse
modes, e.g., individual and systematic reuse.

Reuse techniques include generative and compositional reuse. Reuse in­
tentions define how components are to be reused, i.e., as black boxes, grey
boxes, glass boxes or white boxes. The reuse products we mentioned con­
tained various products of the software life cycle like algorithms and class
libraries. Software components have not been explicitly described as reuse
products. This is done in detail in Part II on Software Components.

www.manaraa.com

4. Nontechnical Aspects of Software Reuse

Contents

4.1 Legal Issues... 38
4.1.1 Trade Secret Protection. .. 38
4.1.2 Patent Protection. .. 38
4.1.3 Copyright Protection. .. 38
4.1.4 Responsibilities and Liabilities. 39

4.2 Economic Issues. .. 39
4.2.1 Initial Investments. .. 40
4.2.2 Reuse Effectiveness. .. 40

4.3 Organizational Issues. .. 40
4.3.1 Reuse Modes....... 41
4.3.2 Organizational Models. .. 41
4.3.3 Producers and Consumers. .. 45
4.3.4 Reuse Maturity. .. 47

4.4 Measurement Issues .. 48
4.4.1 Reuse Level. .. 48
4.4.2 Line and Word Runs 49
4.4.3 Return on Investment. .. 50
4.4.4 Reuse Maturity . 51
4.4.5 Industrial Example. 52

4.5 Summary.. 52

Many nontechnical aspects have to be considered in order to improve sys­
tematic software reuse and to make it the normal way of software creation.
Technical aspects are important prerequisites for successful reuse. However,
they do not suffice to make software reuse happen. Systematic reuse requires
long-term, top-down management support because [FI94]:

- years of investment may be required before it pays off,
- legal issues may have to be considered, and
- changes in organizational funding and management structures may be nec-

essary.

In this chapter we outline various nontechnical aspects that influence the
software reuse process, including legal, economic, organizational and mea­
surement issues. These aspects are covered in Sections 4.1, 4.2, 4.3, and 4.4,
respectively. A summary follows in Section 4.5.

www.manaraa.com

38 4. Nontechnical Aspects of Software Reuse

4.1 Legal Issues

Many legal issues in the context of software reuse are still diffuse. For example,
what exactly are the rights and responsibilities of providers and consumers of
reusable components? What happens if a reused component fails in a critical
application? Such issues are not so important for reuse within companies or
organizations, but may be a hindrance for reuse across such boundaries [FI94].

Software is legally protected as intellectual property. Laws for this pro­
tection may differ among various countries. The following types of protection
are usually provided for software: trade secret protection, copyright protec­
tion and patent protection [Yoc89]. They are all legal concepts and apply to
different aspects of software.

4.1.1 Thade Secret Protection

Trade secret protection is for the "know-how" that is embodied in software.
Know-how in this context is substantial and secret information that is pro­
prietary and leads to a commercial advantage. This becomes a problem when
software is transferred to others, as is the case with inter corporation reuse.
In this case the reuser is obliged to sign a nondisclosure agreement before
the components to be reused are delivered. If, despite signing a nondisclosure
agreement, the reuser does not keep the information confidential, damages
may be claimed. However, others cannot be prevented from using the knowl­
edge unless a patent protection is in effect [Kar95].

4.1.2 Patent Protection

Patents are granted for technical inventions that are new and involve inven­
tive steps. The decision whether something is patentable is often difficult
and requires legal advice. For example, patents are granted for processes or
methods which describe how products work. A computer is a product and an
algorithm is such a process [Kar95].

4.1.3 Copyright Protection

Copyright protection is the most common form of protection for software. It
covers the software itself but not any underlying ideas and principles, which
may be protected by patents. Copyright owners hold the right to reproduce
their software, to reuse, maintain and adapt it, to reverse engineer it, to
make backup copies, and to authorize third parties to perform such activities.
Buyers of copyright protected software are allowed to make backup copies and
to study the software, especially to get information about interoperability,
unless this is provided by other means [Kar95].

www.manaraa.com

4.2 Economic Issues 39

4.1.4 Responsibilities and Liabilities

In the context of software reuse, questions about responsibilities and liabil­
ities have to be addressed. Especially for reuse across company boundaries,
questions about a guarantee that the software works become important. Who
will fix it in case it does not work? Who is liable in case the reused compo­
nent malfunctions? So far, software is usually reused at one's own risk. This
is especially true if the reused software is in the public domain. It is the
responsibility of the reuser to check whether reused components fulfill qual­
ity standards and meet specifications. Careful testing of software before it is
reused may also be important in this context. If software to be reused is pur­
chased, such issues should be addressed in the purchase agreement [Bra94dJ.

Cooper states that the risks of liability deserve serious management at­
tention but do not appear to offer a significant impediment to software
reuse [Co094J. A main distinction has to be made whether reused software
has been modified in a new system. In case of modifications by the reuser,
the reuser bears the primary liability. This is similar to the situation when
vendor-supplied hardware components are integrated into one's system.

4.2 Economic Issues

Costs associated with software reuse must be justified by the expected ben­
efits; i.e., there must be sufficient return on investment. The following ques­
tions have to be answered [Co094J:

-How can the expected benefits be measured and priced?
- How are the various abstract levels of software reuse measured?
- What is the potential extent of reuse for a particular software component?
- What is the projected shelf-life for that component?
- How frequently will the requirements of that component change?

The reuse process is an economic model of supply and demand. The model
includes producers, consumers and a distribution mechanism. How much pro­
ducers are able to transfer depends on how well their products match what
the consumers need. The following factors affect this [CC94J:

- the quality and reusability of the producer'S software
- the skill and knowledge of the consumer about reuse and the reusable

software
- the degree of congruence between the producer's and consumer's project

requirements

Costs incurred by a project creating reusable components must be recovered
from the reusers of those components [FI94J.

www.manaraa.com

40 4. Nontechnical Aspects of Software Reuse

4.2.1 Initial Investments

Initial investments are needed in order to install a reuse program. These
investments include costs that do not directly support the completion of a
company's primary development goals. Instead, money is invested to make
components of this development effort more reusable. The completion of
maintenance investments is the starting point of reuse investments [BB91].

Separating these costs may be difficult. Making software maintainable
is often an integral part of the development process, whereas making its
components reusable is not. However, maintenance will also benefit from
money being spent for software reuse. The reuse benefit can be calculated by
comparing costs for activities done with reuse and those done without reuse,
e.g., comparing the costs for developing a software system from scratch to the
costs of developing this software system utilizing reusable components from
a repository. Reuse investments are cost effective when they are smaller than
the sum of all reuse benefits [BB91]. The benefits can only be estimated at
the time the investments have to be made. If early estimations indicate that
benefits will be small, then only limited investments should be made.

4.2.2 Reuse Effectiveness

Making reuse cost-effective can be accomplished by increasing the level of
reuse, by reducing the average cost of reuse, and by reducing investments
to achieve reuse benefits [BB91]. Early in the development phase the merit
of investing in certain components must be identified and their reuse poten­
tial must be determined. Buying components from the commercial software
market may be taken into consideration. Even if the initial cost is higher, it
might turn out that in the long run a commercial product might prove more
effective if it is well documented, generalized and of high quality.

Reuse effectiveness can be improved by reducing reuse costs and reuse
investments (without reducing reuse). Reuse costs can be reduced by making
components easy to find, adapt and integrate into new systems. Investments
can be reduced by accurately predicting future needs. The measurement of
reuse effectiveness is covered in Section 4.4.

4.3 Organizational Issues

Organizational factors can greatly affect the implementation of reuse pro­
grams. Findings indicate that organizational changes will be required before
the full potential of software reuse can be realized [BKZ93]. Project man­
agers want their projects to succeed, probably even at the expense of other
groups in the same company. In fact, this enhances their career opportunities
because it makes them more successful than their direct competitors. In such

www.manaraa.com

4.3 Organizational Issues 41

a corporate culture, development groups are not encouraged to build gener­
alized software components that may be reused not only in their own future
projects but also in projects of other groups. Building generalized components
for the sake of reusability decreases productivity of their current project and
increases productivity in projects where these components can be reused, i.e.,
possibly in other groups.

In this section we describe different reuse modes, organizational models,
producer and consumer models, and reuse maturity models.

4.3.1 Reuse Modes

Different modes of performing software reuse comprise planned, systematic
and institutionalized reuse versus ad-hoc, opportunistic and individual reuse.

The most common form of reuse is informal and ad-hoc, where no methods
for reuse are defined. It is the responsibility of the individual software devel­
oper to possibly identify and locate reusable components. The productivity
increase is only marginal.

Systematic reuse requires up-front efforts to define guidelines and pro­
cedures, and to measure reuse performance. It means a change of software
development methods. Establishing a reuse program is a long-term process
and is not easy. Systematic software reuse requires appropriate organizational
structures. The Reuse Adoption Process of the Software Productivity Con­
sortium focuses on the transfer of reuse technologies like processes, methods,
and tools into an organization.

Navarro has described the Flexible Software Factory (FSF) Adoption
Strategy, which is used to initiate and guide the transformation of a software
engineering organization to a state where software reuse is instrumental to the
production process [Nav93]. The goal is to have an organization that aligns
work, objectives, intentions and any resources to support software reuse. This
strategy consists of various phases and activities. The purpose is to under­
stand the software engineering organization, determine needed changes, and
finally to effectively incorporate reuse into the production process. For more
details see Navarro [Nav92, Nav93].

4.3.2 Organizational Models

Large-scale reuse in an organization cannot be adopted without organiza­
tional changes. Technology is an important prerequisite for reuse, but people
make it work. Reuse in an organization can only be achieved when people
cooperate [GR95]. Producing valuable and reusable software components is
not enough. We must ensure their transfer to the consumers.

Various models for organizations that support software reuse exist. These
models influence development practices and are an indicator of reuse maturity
in a software company. In practice, a company might reflect some combination

www.manaraa.com

42 4. Nontechnical Aspects of Software Reuse

application application
group group

Fig. 4.1. Ad-hoc reuse

of these models. We distinguish four different models which are described
subsequently (see Goldberg/Rubin [GR95] and Karlsson [Kar95]) :

1. Ad-hoc reuse among application groups
2. Repository-based reuse among application groups
3. Centralized reuse with a component group
4. Domain-based reuse

Ad-hoc reuse among application groups. Frequently companies use or­
ganizations based on projects. If there is no explicit commitment to reuse
then reuse can happen in an informal and haphazard way at best. Most of
the reuse, if any, will occur within projects (see Fig. 4.1).

The reuse of components from different projects may occur but is the
exception. Goldberg and Rubin call this "reuse in the hallway" and describe
the situation with the following short story [GR95]:

An engineer is pacing around his office late at night-mumbling to
himself-until a colleague bumps into him:
"What are you doing?" she asks.
"Thinking," he says.
"What about?" she asks.
He explains his problem. She smiles. She has solved a similar problem.
"Come along," she urges. "I will show you my solution."
And together they go to her office to find the solution.

Repository-based reuse among application groups. The situation
slightly improves when a component repository is used and can be accessed
by various application groups (see Fig. 4.2). However, no explicit mechanism
exists for putting components into the repository and no one is responsible
for the quality of the components in this repository. This can lead to many
problems and hamper software reuse.

The repository-based reuse approach is based on quantity because any
components can be put into the repository and there is no control over their

application
group

repository

application
group

Fig. 4.2. Repository-based reuse

www.manaraa.com

application
group

component group

repository

4.3 Organizational Issues 43

Fig. 4.3. Centralized reuse

quality and usefulness. If no effort had been made to make the components
reusable, then reusers must be cautious. And as there is no control over the
input and no maintenance of the components, reusers have to be cautious even
when the components had been prepared with high quality and reusability
in mind.

Goldberg and Rubin distinguish between the ad-hoc model and the supply
and demand model [GR95]. In the former there is no control over what goes
into and out of the repository. In the latter, components are encouraged to
enter the repository and compete for attention. Components that are not
reused by others are removed from the repository.

The reuse of a central repository may yield to a large number of available
components. Unfortunately, reusers cannot trust these components since no
quality control is in effect.

Centralized reuse with a component group. In this scenario a compo­
nent group is explicitly responsible for the repository (see Fig. 4.3). The group
determines which components are to be stored in the repository, ensures the
quality of these components and the availability of necessary documenta­
tion, and helps in retrieving suitable components in a particular reuse sce­
nario. This amounts to centralized production and management of reusable
software components. Application groups are separated from the component
group, which acts as a kind of subcontractor to each application group. An
objective of the component group is to minimize redundancy.

In the expert services model members of the component group (called
reuse team by Goldberg and Rubin) work on specific projects also [GR95].
Especially during start-up of a new project, the knowledge of members of
this group about the availability of reusable components is invaluable. The
component group can also gain knowledge about components in the project
that are possible candidates for inclusion in the repository. They also gain
first-hand information about problems and possible improvements of existing
components.

Another form of the component group is the product center model [GR95].
In this model members of the component group are not loaned to projects; the
group is responsible for the administration of the central repository, but does

www.manaraa.com

44 4. Nontechnical Aspects of Software Reuse

application
group

repository

domain
group

Fig. 4.4. Domain-based reuse

not give support in retrieving and reusing them. In this case reuse is viewed
as a standard part of software development. It is a matter of course that
application groups use the existing repository and do not need any explicit
help in doing so.

Having a central component group raises the question of who pays for it.
The organization can regard the group as some kind of overhead or investment
and pay for it; or the costs can be covered by projects that benefit from that
group by reusing components.

Domain-based reuse. The specialization of component groups amounts to
domain-based reuse, as depicted in Fig. 4.4. Each domain group is respon­
sible for components in its domain, e.g., network components, user interface
components, database components.

Application groups may build their applications by integrating compo­
nents from different domains. This organization yields to the acquisition of
specific skills and knowledge of specific software domains. One possible draw­
back may be an overhead in communication between project and domain
groups.

Resume. As software companies increase their commitment to reuse, they
will pass from ad-hoc reuse with application groups only through domain­
based reuse with domain groups and application groups. Adopting domain­
based reuse requires sufficient company size to maintain specialized groups.
Component groups are responsible for developing reusable components. Do­
main groups are also responsible for the development of reusable components;
in addition, they have to gain knowledge about their specific domain. Ap­
plication groups are obligated to develop applications by using components
created by these specialized groups. These subareas, component engineering
(design for reuse), application engineering (design with reuse) and domain en­
gineering (design for reuse in a certain domain) are described in Chapters 13,
14 and 15.

www.manaraa.com

4.3 Organizational Issues 45

Fig. 4.5. Lone producer

4.3.3 Producers and Consumers

Having one or several groups for component administration creates a dis­
tinction between producers and consumers of components. Producers (com­
ponent groups) design and develop reusable components. Consumers (appli­
cation groups) design and develop products with reusable components. The
relationship between consumers and producers is essential. Producer groups
can be located at different organizational levels. Four models of these pro­
ducer / consumer relationships have been identified at Hewlett-Packard and
are depicted by Fafchamps [Faf94]:

1. Lone producer
A single individual handles the reuse needs of several application groups
(see Fig. 4.5). The lone producer's primary role is to design, develop
and/or maintain reusable components. Maintenance is typically done by
newly hired programmers, whereas design and development activities are
performed mostly by experienced programmers. Lone producers face the
problems of informal change requests, work overload, isolation and com­
munication overload.

2. Nested producer
Each application group has an individual who provides reuse services and
expertise. Nested producers are members of the application group and
contribute to the development of this product (see Fig. 4.6). However,
their reuse position may be at risk when managers of the application

Fig. 4.6. Nested producer

www.manaraa.com

46 4. Nontechnical Aspects of Software Reuse

Fig. 4.7. Pool producer

group face critical phases in product development and divert reuse efforts
toward product needs.

3. Pool producer
Two or more groups collaborate to produce and share components (see
Fig. 4.7). Pool producers belong to a stable and identifiable organizational
group. The communication overhead may be high in this model, because
the groups may be at geographically different locations. Communication
increases with the number of groups and product lines.

4. Team producer
Groups of producers interact with groups of consumers. Consumer groups
develop products; they are inwardly oriented. A producer group interacts
with the consumer groups; they are outwardly oriented. Producer groups
have a dedicated manager, their own budget and a typical group structure
(see Fig. 4.8).

These consumer jproducer models have various advantages and disadvan­
tages. For example, Fafchamps reports that the nested producer model did
not work well at Hewlett-Packard. This is most likely due to "double man­
agement" in this model. The most important thing for all these models is
that the right people are selected for the producer groups (Le., highly skilled
and experienced in software techniques, in the application domains, and also
in communication and interpersonal relationships), that change requests are
managed properly, that ownership and responsibilities are clarified, and that
conflict-resolution strategies are established [Faf94J.

management

I I
application application application

group group group

I (consumer) (producer) (consumer)
Fig. 4.8. Team producer

www.manaraa.com

4.3 Organizational Issues 47

Prieto-Diaz has also identified specific roles that are crucial in a reuse
infrastructure: librarians, asset managers and reuse managers [Pri90]:

- Librarian
The librarian is responsible for the promotion of reuse by making compo­
nents easily available to potential reusers.

- Asset manager
The asset manager controls compliance with quality standards of reusable
components.

- Reuse manager
The reuse manager coordinates the overall reuse effort and supports the
collection of relevant data needed as feedback for domain analysis.

Librarians and asset managers are members of the component group and/or
the domain group. Reuse managers are responsible for one or more such
groups.

These roles complement the tasks of the domain analyst, domain expert
and domain engineer, who are members of a domain group. They are de­
scribed in Chapter 13.

4.3.4 Reuse Maturity

Reuse maturity is a measure of the effectiveness of an organization's reuse
activities. The evaluation of reuse maturity can be an incentive to take steps
for increasing it. The presence or absence of adequate organizational struc­
tures is a good indicator for reuse maturity in organizations. Assigning an
organization to one of the models described in the previous sections gives a
first clue about the maturity reached.

A five-level maturity model has been proposed by Koltun and Hud­
son [KH91]. In this model the five levels are distinguished by motivation,
planning for reuse, breadth of reuse involvement, responsibility for making
reuse happen, process by which reuse is leveraged, reuse inventory, classifi­
cation activity, technology support, metrics, and legal/accounting considera­
tions. The five levels are initial/chaotic, monitored, coordinated, planned and
ingrained. Table 4.1 gives an overview of the characteristics of the various
levels of this maturity model.

Similar models have been developed by other authors and/or organiza­
tions, for example, a five-stage maturity model by the Software Productivity
Consortium. The proposed stages are ad-hoc reuse, repeatable reuse, portable
reuse, architectural reuse, and systematic reuse. An overview of various mod­
els is given by Griss et al. [GFW94].

www.manaraa.com

48 4. Nontechnical Aspects of Software Reuse

Table 4.1. Characteristics of reuse maturity levels

Level Characteristics

short-term thinking
1. reuse costs are feared

Initial/chaotic resistance to reuse
reuse is individualized, uncoordinated, unmonitored

managerial awareness
2. little active promotion of reuse

Monitored reuse costs are known
individual achievements

organizational responsibility

3.
domain analyses for product line
reuse tactics

Coordinated payoff of reuse is known
component standardization,

life cycle view of reuse
4. reports of reuse costs and savings

Planned reuse is supported and encouraged
reuse across all functional areas

corporation wide view
5. reuse is regular business

Ingrained domain analyses across all product lines
corporation wide definitions, guidelines, standards

4.4 Measurement Issues

It is often said that we cannot manage what we cannot measure. Software
reuse is no exception to the rule. Reuse spans multiple projects and has an
influence even on organizational structures of companies. To manage such
enterprise-wide activities requires some kind of monitoring. Software met­
rics can be used to estimate costs, cost savings, and the value of software
practices [Pou92].

In the following subsections we describe various measures that are useful
in the context of software reuse.

4.4.1 Reuse Level

The amount of software reuse (the reuse leve0 in a certain software system
can be determined by the ratio of reused components (or their lines of code)
to the total components of the system (or total amount of code lines). This
measure does not consider more subtle aspects like adaptation costs, but it
is objective.

www.manaraa.com

4.4 Measurement Issues 49

Fig. 4.9. Sample system with five components

1 1 number of reused components
reuse eve = --------~--~--~------

total number of components

A proposal that reuse be measured as the number of lines of code incor­
porated in a system without modification, divided by the total number of
lines of code in the system has also been made by the Software Productivity
Metrics Working Group of the IEEE [BKZ93]. We can further distinguish
between external and internal reuse and determine these levels. The internal
and external reuse levels consider components that have been developed for
the system or outside the system, respectively [FI94].

Exalllple. A small system consists of five components, say A, B, C, D and
E (see Fig. 4.9). Component A calls components Band C; both Band C call
D and E. If D and E are reused and the other three components have been
developed from scratch, we get a reuse level of ~ or 0.4.

Object-oriented systellls. Object-oriented software development allows
the simple modification and extension of components through inheritance.
In this case a new component reuses a fraction of the component it inherits
from. Different ways of calculating reuse levels are possible. We can simply
regard the components as either new or reused or do a more subtle distinction
by considering how often a component is reused through inheritance, or even
how often and how many of its functions are called.

4.4.2 Line and Word Runs

A reuse measurement based on lines and words for a low-level determination
of white-box reuse has been proposed by Childs and Sametinger [CS96b].

The number of lines that are identical in file a and file b as opposed to
the total number of lines (of file a) gives an indication of how much of file a
has been reused in file b.

1. number of identical lines
me reuse percentage = 1 b f r x 100

tota num er 0 mes

This formula can be used in both directions, i.e., to determine how much of
file a is being reused in file b and to determine how much of file b originates
from file a (by using the total number of lines of file b).

www.manaraa.com

50 4. Nontechnical Aspects of Software Reuse

Comparing lines and words gives a good indication about white-box reuse.
Let Rl and Rw denote the reuse percentage of lines and words, respectively.
As it turns out, usually Rl and Rw do not differ much, with Rw slightly
higher than RI. If both RI and Rw are high, then obviously reuse had been
achieved. If RI is low, but Rw is high, then reuse had been achieved, but the
reused text had been modified on a more local basis, which leads to many
different lines (and a lower Rl), but still leaves many equal words (leading to
a higher Rw). Finally, if both Rl and Rw are low, then apparently there is
only little reuse.

If several consecutive lines are identical in two files, it is likely that they
were reused. If there is a solitary identical line, it might have been reused,
but it also might have nothing to do with reuse at all. For example, consider
lines in C and cplusplus source code containing closing braces ('}'). In some
cases such lines may be regarded as being reused in a certain context, i.e.,
when the surrounding lines are reused as well.

We obtain a modified reuse percentage by only considering lines (or words)
when they are part of a run of certain length. For more details see Chapter 19,
where we describe a case study with line and word runs.

4.4.3 Return on Investment

Henderson-Sellers suggests metrics based on reuse savings and generalization
costs [HS93j. The return-on-investment metric is defined as follows:

. reuse savings
return on mvestment = I

genera ization costs

It is important that long-term generalization costs not exceed long-term reuse
savings; otherwise reuse is not recommended. Reuse savings can be deter­
mined by estimating the costs for developing all components anew and sub­
tracting the costs necessary for partly new development plus costs for finding
reusable components and for their modification (if needed). Generalization
costs are difficult to assess, but will somehow depend on the size of compo­
nents. Regarding a single project only would suggest that components from a
repository are reused without providing components for the repository, thus
minimizing generalization costs. Therefore, return on investment has to be
assessed over a number of projects.

It is also important to consider the whole spectrum of life cycle costs,
e.g., costs for testing, verification and maintenance. On the one hand, these
costs will hopefully be reduced by reusing a component. On the other hand,
despite cost reductions during development, the integration of a component
may have an impact on the overall system design and a negative impact on
software maintenance [MR90j.

www.manaraa.com

4.4 Measurement Issues 51

low reuse maturity:

C~ -~-- - potential opportunities

:-4-,t---4-- actual reuse
_ __ _..-4----+- intended opportunities

high re@use ma~Ur,,.it_y+-: -+-__
'-- -- potential opportunities

actual reuse
~+--- intended opportunities

4.4.4 Reuse Maturity

Fig. 4.10. Reuse ma­
turity

Section 4.3.4 on page 47 described reuse maturity levels. It is difficult to
quantify these levels. Organizations often measure their reuse efforts by the
ratio of reused source code lines to the total number of source code lines.
This is not sufficient for the measurement of reuse maturity because it does
not reflect how many reuse opportunities had been missed [DW92].

Reuse maturity can be seen as the range of expected results in reuse ef­
ficiency, reuse proficiency and reuse effectiveness that can be achieved in an
organization by following a reuse process [DW92]. But even though we give
formulas below, it is difficult to determine the results unless high reuse ma­
turity has been achieved by an organization. Otherwise the input parameters
are not readily available and have to be based on estimated numbers.

Fig. 4.10 shows two examples of low and high reuse maturity [DW92]. In
the upper example potential and intended opportunities do not match each
other well. Thus actual reuse is limited from the start. In the lower example
these opportunities match better, facilitating higher actual reuse.

It is crucial for organizations to recognize existing reuse opportunities and
to exploit them systematically. Failing to recognize them leads to fruitless
efforts.

Reuse efficiency. Reuse efficiency measures how much of the intended reuse
opportunities have actually been exploited by an organization. It is deter­
mined by the ratio of the percentage of exploited reuse opportunities to the
percentage of intended reuse opportunities. If the intended reuse is 50% (i.e. ,
the organization aims at exploiting 50% of the reuse opportunities) and the
actual reuse is 25%, then the reuse efficiency is ~g or 0.5.

ffi . exploited reuse opportunities
reuse e clency = . . .

mtended reuse opportumtIes

Reuse proficiency. Reuse proficiency is the ratio of actual reuse to poten­
tial reuse, i.e., the ratio of the percentage of exploited reuse opportunities to

www.manaraa.com

52 4. Nontechnical Aspects of Software Reuse

the percentage of potential reuse opportunities. If the potential reuse is 75%
and actual reuse is 25%, reuse proficiency is ~~ or 0.33.

fi . exploited reuse opportunities
reuse pro clency = ----''----:-. -:-----=-='----:-:--

potential reuse opportunities

Reuse effectiveness. Reuse effectiveness is the ratio of reuse benefits to
reuse costs. It can be measured by the ratio of the difference between what
the development of a new component would have cost to what it costs to
reuse the component times the number of its reuse to the investments costs to
acquire or develop the reusable component. Consider the following example:
the development of a new component costs USD 10,000; the development to
make it reusable costs USD 13,000; to reuse the component costs USD 1,000.
If the component is used twice, then the reuse effectiveness is 2 x 1°'°1°3°;;-;0°00

or 1.38. '

cr . f cost of development - cost of reuse
reuse ellectiveness = no. 0 reuses ----:---,...:,....,..----:---::---­

cost of acquisition or development

4.4.5 Industrial Example

Significant and largely positive effects of software reuse on software develop­
ment have been found in two reuse programs at Hewlett-Packard [Lim94].
Metrics were collected in these programs and demonstrated that reuse can
provide a substantial return on investment. Findings indicated that software
reuse positively influenced quality, productivity and development time. Re­
turns on investment (savings/costs) were 216 and 410 percent with gross
savings of 5.6 and 4.1 million US dollars, respectively. The relative cost of
creating reusable code components was about twice as high as creating these
components without supporting their reuse. The relative cost to reuse these
components, i.e., integrate them into new systems, was only about a quarter
to a fifth of the costs to develop them anew.

The FAGQM (Framework Assisted Goal Question Metric) model is pre­
sented and illustrated by Vaishnavi and Bandi [VB96]. It suggests metrics
for the perspective of development for reuse and development with reuse. A
framework for setting up a software measurement program is described by
Goldberg and Rubin [GR95].

4.5 Summary

In this chapter we have described legal, economic, organizational and mea­
surement aspects of software reuse. This chapter is intended to give an intro­
duction rather than to provide detailed information on the subject.

Readers who are interested in more details on nontechnical aspects of
reuse are referred to further literature. Griss, Favaro and Walton give a

www.manaraa.com

4.5 Summary 53

good overview of the subject [GFW94]. Nontechnical issues are also cov­
ered in the books by Karlsson [Kar95] and Goldberg/Rubin [GR95]. Zand
and Samadzadeh have edited a special issue of the Journal of Systems
and Software on software reuse; this issue covers many nontechnical is­
sues [ZS95]. Producers and consumers at Hewlett-Packard are described by
Fafchamps [Faf94].

www.manaraa.com

5. Installing a Reuse Program

Contents

5.1 Steps to Install a Reuse Program. 55
5.1.1 Reuse Assessment. .. 56
5.1.2 Reuse Initiation. .. 57
5.1.3 Reuse Experiment. .. 57
5.1.4 Reuse Expansion. .. 58
5.1.5 Domain Analysis. .. 58
5.1.6 Reuse Consolidation. .. 58

5.2 Management Commitment 58
5.3 Reuse Motivation 59
5.4 Third-Party Components. .. 61
5.5 Summary.. 63

The benefits of reuse are quite apparent. So the question is not whether to
install a reuse program but rather how to install it. Some of the benefits
of reuse can certainly be realized by casual approaches. However, adopting
large-scale, institutionalized reuse requires many steps and is not trivial at
all [Bra94d]. Reuse programs should start small and gain experience through
pilot projects in order to be successful and effective. A common misconception
is that object-oriented programming will bring software reuse for free.

In this chapter we describe how to install a reuse program. Steps that
have to be undertaken to install a reuse program are depicted in Section 5.1.
Selling the idea to management is discussed in Section 5.2. In Section 5.3
we consider how to motivate reuse, and in Section 5.4 we cover third-party
components and component markets. A summary follows in Section 5.5.

5.1 Steps to Install a Reuse Program

Software reuse must be explicitly installed. It requires start-up costs and has
effects not only on technical aspects. A reuse program should be installed in
progressive steps, where each step sets the basis for the following steps. This
enables starting a reuse program and learning from it. Advantages for this
incremental approach are [Pri91c]:

www.manaraa.com

56 5. Installing a Reuse Program

Fig. 5.1. Steps to install a reuse program

- immediate return on investment,
- confidence within the organization,
- ease of management,
- possibility to tune and refine the reuse program, and
- possibility to monitor and evaluate reuse.

Additionally, the process should be systematic and formal, i.e., consistent, re­
peatable and decomposable into well-defined steps [Pri91c]. These steps may
be carried out repeatedly, increasing the scope of reuse in case its adoption
has been successful so far. The steps for adding the practice of reuse to an
organization are described in the subsequent sections. An overview of these
steps is depicted in Fig. 5.1.

Various reuse benefits were described in Section 2.2 on page 11. Reuse
programs can be tuned to benefits that fit the business objectives of an orga­
nization. The objectives should be clearly defined, e.g., productivity/quality
improvements, time to market [GFW94].

Several authors have described how to set up reuse programs, e.g., Braun
[Bra94d], Goldberg and Rubin [GR95], Griss [Gri93], Griss et al. [GFW94],
Joos (J0094J, Mili et al. [MMM95] and Prieto-Dfaz [Pri91c].

5.1.1 Reuse Assessment

Despite of the apparent benefits of reuse, its potential in a certain organiza­
tion have to be understood and should be assessed before a reuse program is
installed. The potential payoff/cost to the organization have to be analyzed.
The following questions should be addressed during this phase:

- Is software reuse feasible in our organization?
Is software production large enough to justify a reuse program? Will man­
agement support a reuse program? Are there enough (human and financial)
resources for a reuse program? Can we afford a reuse program? How many

www.manaraa.com

5.1 Steps to Install a Reuse Program 57

similar systems will be produced? Are reusable assets already available?
What do we want to reuse?

- Is our domain suitable for reuse?
How broad/complex is the domain? Is the domain mature and well under­
stood? Is it stable or rapidly changing?

- How is the cost/benefit relation?
What is the desired level of reuse? How much will the reuse program cost?
Is it economically justified?

- How will we implement reuse?
What are the steps to implement the reuse program?

In case an organization is developing software in more than one domain, it is
recommended to identify those which are well understood, have applications
with similar requirements, and are important for the organization. Initial
reuse installment can be restricted to only one or several of these domains.

5.1.2 Reuse Initiation

Existing software has to be analyzed in order to find, evaluate and select
potentially reusable software components. The components may need to be
generalized and/or complemented with specific reuse documentation. Then
they need to be stored in a repository to serve as the base of reusable compo­
nents in the organization. The effort needed for performing these tasks will
vary depending on the scope of the reuse program to be installed. This may
range from a part-time individual at almost no cost to the installment of a
separate organizational unit. Especially in the latter case, support from top
management is essential because initial costs face a slow return on invest­
ment [Pri91c] (see also Section 4.3 on page 40 on organizational issues).

Not every component that is reusable will be considered in this initiation
step. Thus categories of reusable components should be identified and pri­
oritized. It is important to acquire components that are important for the
business. Assigning components to different levels of generality can be useful
in this context. Examples of such levels are: components of interest to any
business, components of interest to any company within the industry, and
components specific to the company [GR95].

5.1.3 Reuse Experiment

Risks and costs are reduced by starting with a reuse experiment. This will
facilitate learning about technical and organizational issues that impede the
reuse program. The experiment can be done with an ongoing project as well
as with a new one that is to be approached with reuse.

It is important that success criteria be defined and measurements be taken
for the experiment. The project should not be too long, so that results are

www.manaraa.com

58 5. Installing a Reuse Program

not delayed too long. Depending on the results, the reuse program should be
extended (positive results) or reworked (unsatisfactory results).

5.1.4 Reuse Expansion

If the reuse experiment has been successful, a commitment to change has to
be institutionalized. Other applications have to be integrated into the reuse
efforts and the repository of reusable components has to be extended and
consolidated. Incentives to support the program should be provided until
reuse becomes part of the culture [Jo094].

Other domains can be considered for reuse either by doing an experiment
in that domain also, or, in case reuse benefits are convincing enough, by
developing the needed resources right away.

5.1.5 Domain Analysis

Domain analysis is necessary in order to institute systematic reuse. It com­
prises activities to identify needs that are common to multiple projects in a
certain domain. Chapter 13 covers the topic in depth.

5.1.6 Reuse Consolidation

Institutionalized reuse requires adjustments of organizational structures and
additional activities like domain analysis and administrating the component
repository. Software development processes have to be adapted. Reuse train­
ing for engineers as well as tool support for reuse has to be established [Jo094].

Steps for installing reuse may be rerun even if reuse has been installed
successfully already. For example, the abstraction level of reused components
should be as high as possible. In a first step the reuse of function libraries may
be considered. In a next installation cycle, object-oriented technology may
be considered as well. Depending on the maturity of component technology,
further component types should be included in the reuse program.

5.2 Management Commitment

Installing a software reuse program cannot be accomplished successfully with­
out the commitment of management. Substantial effort may be necessary to
convince managers of the necessity of a reuse program. Without their support
reuse installmation is doomed to fail.

Griss et al. provide some guidelines on how to sell reuse to management
[GFW94]. Important topics are:

www.manaraa.com

5.3 Reuse Motivation 59

- benefits and costs,
- extent of required changes,
- degree of (managerial and technical) innovation,
- amount of needed management time and effort,
- involved risks, and
- a plan for reuse introduction.

Reuse has to be presented as a concept that is sufficiently mature, where both
technical and nontechnical aspects are understood well enough to be ready
for exploitation.

The primary goal in installing software reuse is not to "do reuse" but
to improve certain aspects in the software process, e.g., product quality. In
this sense, as YHi-Rotiala points out, software reuse is nothing more than an
improvement of software engineering methodology [YR95].

5.3 Reuse Motivation

People are an important factor in the successful installation of a reuse pro­
gram. Components will only be used if people are willing to do so. On page 16
we mentioned the not-invented-here syndrome. As long as software reuse is
not a matter of fact, people have to be motivated to overcome their negative
attitudes.

Discomfort with reuse is often expressed by statements like: "We don't
want to do extra work to benefit someone else," "We can do this better," "We
won't use it if it's built by someone else" [GR95], or "Reusable code is too
slow," "Reusable code is too hard to understand," "It is quicker to write this
on our own" [GFW94]. Competition within organizations can be a hindrance
in this respect.

Under pressure to complete a software project as quickly as possible soft­
ware, engineers do not have time to design, implement and document with
reuse in mind. Short-term needs of individual projects have to be balanced
with long-term needs for building a collection of reusable components. Devel­
opers and project managers have to be encouraged to build reusable compo­
nents and to incorporate existing components into their systems. Examples of
incentive programs have been described by Poulin [Pou95] (see also [J0094]).

There are several possibilities to increase the motivation for software
reuse, but not every attempt will lead to successful reuse when responses
to symptoms of reuse obstacles are misaligned with reuse goals. For example,
a bonus for placing a component into the repository does not necessarily lead
to a collection of useful components [Mal93]. Problems with various motiva­
tions are depicted by Goldberg and Rubin [GR95]:

- Royalty payments
One form of propagating reuse is to pay royalties to the creators of soft-

www.manaraa.com

60 5. Installing a Reuse Program

ware components every time their component is reused in a different con­
text. This model is widely used in the book domain. Books are reusable
components, too. Goldberg and Rubin point out that this model may lead
developers to prefer reusing their own components or those of their friends.
Also it is difficult to determine the degree of ownership of object-oriented
components, where inheritance may yield to more than one owner. This
problem gets even worse with components at higher levels of abstraction,
where many developers have contributed to a component.

- Reuse bribes
Instead of paying the authors of components, we can motivate reuse by
rewarding those who reuse the components. But in this case, developers
may tend to reuse as much as possible, even though it may not be justified
at all.

Other motivating activities include punishments for not reusing and rewards
for appropriate reuse. Reuse incentives are important to encourage reuse,
but reuse incentives alone are not a key to successful software reuse. For ex­
ample, Poulin and Wasmund have reported that reuse incentives helped to
create reuse awareness and did not cost much, but did not change much ei­
ther [Pou95, Was94). But there have also been positive reports, e.g., monetary
rewards at GTE [Pri91b).

Developing software the way it has always been developed and providing
motivation for software reuse in some form described above does not nec­
essarily change much. Software developers do not need extra payments or
bribes to make a design before starting to implement, because this is the
way we develop software systems. In this sense we have to change the culture
so that reusing existing software components and making new components
reusable is the way we do software engineering. And we have to keep in mind,
as stated by Goldberg and Rubin [GR95), that it is not the goal to reuse
software components, but by doing so we hopefully increase software produc­
tivity and design better software systems from the viewpoint of adaptability,
modifiability and maintainability.

We should reward software engineers for meeting their goals and objec­
tives. However, these goals and objectives are not primarily to reuse compo­
nents. They are to build reliable, high-quality software systems in a certain
amount of time. Software engineers must objectively judge whether it is bet­
ter to reuse a component or to develop a new one. "Reuse is not the goal; it
is the means to a goal" [GR95).

Achieving these goals requires changes and incentives not at the software
engineering level but at the project and upper management level. Build­
ing reusable components is in contradiction to the goal of building a single
software system with minimal cost. Therefore, it is necessary to distinguish
between producers and consumers of components and have both application
groups and component groups (see Section 4.3 on page 40).

www.manaraa.com

5.4 Third-Party Components 61

Education and training is another important contribution for the suc­
cess of software reuse. A series of courses has been proposed by Griss et
al. [GFW94]: introduction to reuse, "consumer" course, ''producer'' course,
domain analysis, advanced programming, and librarian and maintainer train­
ing. Reuse lexicons help in agreeing on basic definitions. Additionally, hand­
books and guidebooks can be helpful.

5.4 Third-Party Components

Reuse activities incorporate systematic creation and reuse of components.
However, components considered for reuse may also be developed by others
(outside the company). In this case several points have to be taken into
consideration [Pit93]:

- Quality
Quality of third-party components is usually the major concern of man­
agers and developers. Unfortunately, validation and verification of (com­
plex) components is not viable in practice. A list of known defects and refer­
ence sites may give a first indication of a component's quality. The concept
of programming by contract offered in the Eiffel programming language is
an example of ensuring a certain behavior of components [Mey88].

The quality of a purchased component will usually be higher than the
quality that could be achieved by developing for a comparable price. Qual­
ity concerns may sometimes simply express the not-invented-here syn­
drome.

- Costs and benefits
Using third-party components may reduce a product's time to market,
but it also means increased dependence on component suppliers. Costs
are avoided by not having to develop and maintain certain components.
Potential costs lie in the possibility of having to adapt and modify them.

- Ease of modification/adaptation
Many components are difficult to adapt and modify or have only limited
capabilities in this respect. It is important to know one's own requirements
for third-party components and, in case they do not completely fulfill them,
to determine whether it is possible and how difficult and time-consuming
it is to make needed modifications.

- Risk analysis
Commitment to the reuse of third-party components always involves cer­
tain risks. One way of managing these risks is by using conventional
risk management, e.g., Boehm's spiral model [Boe91] (see Section 12.4
on page 156). For example, the component vendor may be required to

www.manaraa.com

62 5. Installing a Reuse Program

Table 5.1. Software reuse at various levels

Level Criterion

3. Intl./national level existence of a component market

2. Corporate level institutionalized reuse culture

1. Project level reuse-driven development

provide support in fixing bugs and/or making certain enhancements. Es­
pecially when using components from small vendors it is advisable to take
precautions in case the vendor files bankruptcy.

- Legal issues
Legal issues have to be considered as well (see Section 4.1 on page 38).

The scenario of composing software systems out of components will not be
achieved unless we manage to install a market of reusable components. Lim­
ited markets do exist in the form of software repositories. For example, class
libraries and function libraries are commercially available, and collections of
reusable assets are also used within companies to increase software produc­
tivity. However, we do not yet build software by using commercially available
components like building blocks ("legos"). The primary challenge for soft­
ware component markets is the integration of the components. Even if we
pick components with the needed functionality, we will not be able to build
the application by simply integrating these components because too many
integration mechanisms exist which often cannot be combined.

In the context of software component markets, Morrison has suggested
various success levels for software reuse [Mor91). The goal is to achieve
higher-quality products with lower costs for the customer. At the project
level, development and maintenance have to be done with reuse in mind; i.e.,
components have to be designed and developed for reuse, and applications
have to be designed and developed with reuse. At the company level it is im­
portant that a reuse culture be institutionalized, that reusable components
be maintained and made accessible. At the national and international level,
markets of reusable components must exist to avoid redundant developments
in many companies (see Table 5.1).

Software component markets raise many nontechnical questions, as ad­
dressed in Chapter 4.

www.manaraa.com

5.5 Summary 63

5.5 Summary

Systematic software reuse can only be achieved with careful planning. It
requires much effort to be successful. We have described steps to install a
reuse program. These steps will vary slightly depending on a company's or
department's size and the extent of reuse to be accomplished.

Reuse maturity models can also be taken as a guideline to install reuse.
Actions have to be taken to make the transition from one maturity level to
the next.

The market for software components is not extensive yet, but third-party
components are available and provide alternatives to custom development.
In order to increase the availability of third-party components and to extend
the flexibility of software, component technology has to be advanced. This is
the topic of Part II.

www.manaraa.com

Part II

Software Components

www.manaraa.com

6. Software Components

Contents

6.1 Component Definition..... 68
6.1.1 Definition. .. 68
6.1.2 Related Work. .. 70

6.2 Component Interfaces , 71
6.2.1 Data Interfaces. .. 72
6.2.2 Command-Line User Interfaces. 73
6.2.3 Graphical User Interfaces 73
6.2.4 Programming Interfaces. 74
6.2.5 Command Language Interfaces. 75

6.3 Component Platforms .. 76
6.3.1 Platform Categories. .. 78
6.3.2 Component and Platform Dependencies. 78
6.3.3 Open Systems .. 80
6.3.4 Design Patterns. .. 81

6.4 Summary.. 82

We envision an ideal scenario of software engineering as building applica­
tions by assembling high-level components. If any required components are
not available, they have to be built out of lower-level components. Finally,
when even low-level components are not available, they have to be imple­
mented in some programming language. Thus components are created either
by composition or by programming.

The idea of this scenario is not new. In 1969 McIlroy envisioned an in­
dustry of reusable software components [McI76]. In 1982 Wasserman and
Gutz saw the programmer of the future working with "standard components,
programming in the large with a decreased need for programming in the
small" [WG82]. These visions were based on the conception of source code
components. We see a much broader definition of components.

In this chapter we discuss definitions of software components in Sec­
tion 6.1, various forms of component interfaces in Section 6.2, and component
platforms in Section 6.3. A summary follows in Section 6.4.

www.manaraa.com

68 6. Software Components

6.1 Component Definition

Several definitions of components and reusable components have been pro­
vided in the literature. We distinguish two different approaches. Components
can be seen as some part of a software system that is identifiable and reusable.
Functions and classes are examples of such components. Components can also
be seen as the next level of abstraction after functions, modules and classes.
The term component-oriented programming (as a successor to object-oriented
programming) is often used in this context.

We propose a component definition and discuss related work in Sec­
tions 6.1.1 and 6.1.2, respectively.

6.1.1 Definition

In the introduction in Section 1.1 on page 2 we already previewed what we
mean by software components in the context of reuse. We said that software
components are any artefacts that we can integrate into and clearly identify
in software systems. They have an interface, encapsulate internal details, and
are documented separately. Now we give a more precise definition:

Reusable software components are self-contained, clearly identifiable
artefacts that describe and/or perform specific functions and have
clear interfaces, appropriate documentation and a defined reuse sta­
tus.

We clearly take the (conservative) approach of defining existing abstractions
as components. If we want reuse to become a matter of fact, we have to start
with existing components rather than to wait for new abstractions on the
horizon. However, should a new technological breakthrough bring new kinds
of components into being, our definition will (most probably) nicely cover
them as well.

According to the definition given above, a component has to be self­
contained, clearly identifiable, etc. We will elaborate the elements of our
definition in more detail.

- Self-containedness
Components should be self-contained, i.e., reusable without the need to
include other components for reuse. In this sense, a function is regarded as
a component if it can be reused on its own, i.e., without the need of any
other functions. If other functions are needed as well, then the whole set of
functions must be seen as reusable component, with one of the components
serving as the interface to the whole group. For this reason, programming
languages have introduced the concept of modules and packages. Function
libraries are a set of functions that are reused. Not a single function but
the whole library serves as reusable component with many different inter­
faces and functionalities. The same holds for higher-level components. One

www.manaraa.com

6.1 Component Definition 69

module can serve as the interface for a set of modules which are the entity
for reuse, i.e., the component to be reused. One process can serve as the
interface for a set of processes which can even run on different machines.
Classes of application frameworks typically cannot be reused stand-alone,
but the whole collection of classes has to be reused (and thus is the reusable
component).

It may not always be practical to integrate all parts with a component
in order to make it self-contained, but the dependencies have to be clearly
documented (see Section 6.3.2 on page 78 on such dependencies).

- Identification
Components have to be clearly identifiable, e.g., contained in a file rather
than being spread over many locations and intermixed with other artefacts
of software or documentation.
We use the term artefact in our definition to indicate that components
can have a variety of different forms, e.g., source code, documentation,
executable code.

- Functionality
Components describe and/or perform specific functions; i.e., components
have a clearly specified functionality which they perform or describe (see
Documentation below). We use the formulation and/or in the definition to
indicate that components may also be descriptions of functionality without
performing functions themselves. Thus we can regard software life cycle
documents (e.g., specifications, design documents) as components although
they do not harbor programatic functionality.

- Interfaces
Components have to have clear interfaces and hide details that are not
needed for reuse. Details on interfaces are given in Section 6.2 on page 7l.

- Documentation
Documentation is indispensable for reuse. The most useful component is
rendered useless for reuse purposes when appropriate documentation is
not available. Appropriateness depends on the kind of component and its
complexity. Enough information must be provided to retrieve a component
from a repository, evaluate its suitability for a certain reuse context, make
adaptations, and integrate the component into its new environment. We
deal with documentation in detail in Part IV.

- Reuse status
Components must be maintained to support systematic reuse. The reuse
status contains information about who is the owner of a component, who
maintains it, who can be contacted in case problems arise, and what is the
quality status of the component. The reuse status or parts thereof may
be known implicitly when reuse is limited to certain departments or small

www.manaraa.com

70 6. Software Components

companies. However, it becomes crucial information once reuse extends
beyond company boundaries.

We have provided a broad and general definition of reusable software compo­
nents. According to this definition we can have a variety of components like
functions, classes, applications, subsystems, design documents, distributed
processes, Ada packages, Omega prototypes, etc. However, we cannot simply
reuse any of these components in a certain reuse context. A classification
is important to assign components to specific categories and limit compo­
nent retrieval to categories appropriate in a certain context. We provide a
component taxonomy in Chapter 9.

6.1.2 Related Work

Here we discuss several existing definitions of components. We start with
simple definitions and proceed to more sophisticated ones.

- Holibaugh et al. define a component vaguely as a "logical part of a system
or program" [HP88]. This is an example of a general definition without
explicit consideration of reuse aspects.

- Booch defines a reusable software component more specifically (at the
source code level) as "a logically cohesive, loosely coupled module that
denotes a single abstraction" [Boo87]. As such, these components provide
vehicles to formally express algorithms and data structures; support soft­
ware engineering principles like abstraction, information hiding, modular­
ity, and locality; exploit facilities of programming languages (Ada in this
case); and offer mechanisms for reuse.

- McGregor et al. use a more general definition. They write: "A component is
any unit that provides a relatively independent piece that is used in combi­
nation with a number of components in different configurations" [MDK96].

- Hooper and Chester use the term software component "to mean any type
of software resource that may be reused (e.g., code modules, designs, re­
quirements specifications, domain knowledge, development experience, or
documentation)" [HC91].

- Nierstrasz and Dami define software components as "static abstractions
with plugs" [ND95]. By 'static' they mean that components can be stored
in repositories. By 'abstraction' they mean that internal details are hid­
den and an interface to the component describes its (possibly complex)
functionality. Finally, 'plugs' are well-defined ways of interaction and com­
munication with the component and can have a variety of forms, e.g.,
parameters, ports, messages. This definition suggests that components are
"static entities that are needed at system build-time" [Nie95].

- In the context of OpenDoc, a component software architecture, the follow­
ing definition is given [Met94]: "Software components are defined as pre-

www.manaraa.com

6.2 Component Interfaces 71

fabricated, pretested, self-contained, reusable software modules-bundles
of data and procedures-that perform specific functions."

- The NATO Standard for the Development of Reusable Software Compo­
nents offers the following definition: A reusable software component is "a
software entity intended for reuse." It "may be design, code, or other prod­
uct of the software development process" [Bra94a, Bra94b, Bra94c]. Simi­
larly, Kain defines a component as "a product of the development process
that exhibits certain qualities of usability and separability" [Kai96]. These
definitions are general and comprise more than just source code. Anything
may be a reusable software component as long as it is intended for reuse
and/or separable from its original context.

- Wegner sees component-based programming as the next (evolutionary)
step after procedure-oriented programming and object-oriented program­
ming [Weg93]. Components are "a generalization of objects that extends
the primitives for realizing interaction to include distributed components,
graphical user interfaces, databases, robots, and virtual reality." Interac­
tion is a key characteristic of components. In procedure-oriented program­
ming, software systems are sequences of actions. In object-oriented pro­
gramming software systems are already collections of interacting entities.
Components provide a more general model of computation by including
distributed components, graphical user interfaces, etc.

- Szyperski sees component-oriented programming as a refined variation on
object-oriented programming [Szy95]. Without explicitly defining what a
component is, he considers information hiding, polymorphism, late binding
and safety as crucial aspects for component-oriented programming.

Many of these definitions see components as some form of abstraction in
existing programming languages with additional requirements regarding their
characteristics, like self-contained, independent or tightly coupled.

Our definition provided in the previous section can be seen as a super­
set of the definitions listed in this section. We intentionally want a general
definition of components to provide a broad range of reuse. Systematic reuse
should be started with whatever component technology is available. Once
new technologies become available and mature, reuse should be extended to
cover new types of components as well.

Another difference between the definitions is, again due to our emphasis
on reuse, that we explicitly include appropriate documentation and a defined
reuse status. This is somewhat vague as it strongly depends on the type of
component. However, in Part IV we provide more information on this topic.

6.2 Component Interfaces

Components are not completely independent of other components and of their
environments. Many components are implemented in a specific programming

www.manaraa.com

72 6. Software Components

language and cannot be reused in the context of arbitrary other languages.
Other components run on a certain operating system and may require a
certain window system.

An interface determines how a component can be reused and intercon­
nected with other components. It defines an operation or a set of (usually
related) operations that is available for a component. Most programming lan­
guages require the explicit documentation of a component interface. Classes
and modules have been designed to explicitly separate interface and imple­
mentation. Procedural interfaces do not always document the complete in­
terface; e.g., global data can be directly accessed without being documented
in the procedure heading.

Executable components often do not have an explicit interface. There is
no tool that checks whether such components are compatible. The needed
information is available in the documentation at best. However, abstraction
is provided, implementation details are hidden. The source code need not
even be available.

Interfaces of components are crucial for their composition. One component
exports certain functionality; another imports functionality. Two components
can be composed, i.e., put together, if the requirements of the importing
component match the provided functionality of the exporting component.

Multiple interfaces. Components may have multiple interfaces. This is
useful to structure complex functionality or, for example, to provide backward
compatibility.

Interface types. Components have different types of interfaces. They have
a programming interface, a user interface, and/or a data interface. For reuse
all three interfaces are important, although the programming interface is
certainly the most important one.

All three types of interfaces are interesting in the context of reuse because
they can provide a means for reusing a component. For example, tools with
command-line user interfaces can be reused by means of pseudo ttys; i.e.,
another program simulates the input and output medium for the tool. Data
interfaces can be used to subsequently transform data until it has reached its
final form. Any components that read data in the required format and pro­
duce data in whatever format is required can be used in this transformation
process. Unix filters are a prominent, successful example of this approach. In
subsequent sections we discuss these interface types in more detail.

6.2.1 Data Interfaces

The simpler a component's interface is, the easier it is to reuse it. Components
that read input data, perform some transformations or do calculations, and
write output data have proven to be highly reusable. Components do their
work without requesting further input after being invoked and can easily be
reused for automating tasks (like batch processing).

www.manaraa.com

6.2 Component Interfaces 73

ASCII text is the most common data format and the most common de­
nominator for many software systems. Thus systems with textual input and
output have proven most successful in automation. Other data formats are
possible as well, for example, using a database. However, this reduces the
likeliness that two components share the same data formats and can be used
together.

Reusing components in a series, one component inputting the previous
component's output, has provided the basis for one of the reuse success sto­
ries. The Unix operating environment provides the pipe mechanism that eases
the connection of tools with textual input/output. The tools are the com­
ponents and called filters (see Section 10.3 on page 133). Unix filters are
processed sequentially and on a single machine (no distribution).

Textual input/output of two tools makes composition easy. However, it
does not guarantee correct and useful interoperation of components. Texts
can have various structures and semantics. Components may require the text
for their input to conform to a certain structure. If another component's
output does not provide this structure, connecting these components is tech­
nically feasible but does not make sense.

6.2.2 Command-Line User Interfaces

Software systems that require interaction from the user are more difficult
to reuse. If a system has only a command-line user interface rather than a
graphical user interface, pseudo ttys can be used to embed them in other soft­
ware. This mechanism has been used to endow legacy systems with modern
graphical user interfaces. Instead of redeveloping or restructuring the whole
software system, only the user interface has to be developed, with the original
(reused) system running in the background.

An example of the interconnection of interactive programs is expect, a
program that reads scripts that resemble the user dialog [Lib90]. Components
can be any batch or interactive programs. Two components are connected
by another component (expect) that controls them by a given script. The
main advantage of using a tool like expect is that it can easily deal with
legacy applications, as there is no adaptation or modification necessary on
these applications. The supported programs are not graphical; i.e., modern
graphical user interfaces are not supported.

The reuse of tools with command-line user interfaces is more complicated
than the reuse of tools with simple textual input/output. It is also more
flexible, but the additional effort needed has prevented such tools from being
reused extensively.

6.2.3 Graphical User Interfaces

Modern software systems have graphical user interfaces. Their reuse in a new
environment provides a new challenge. The most trivial mechanism for appli-

www.manaraa.com

74 6. Software Components

cation communication is sending keystrokes to other applications; this might
be supported by the operating system. This requires no special arrangements
on the part of an application but enables only limited reuse potential. More
successful approaches require handling communication in an application.

A first step toward the integration of applications with graphical user in­
terfaces is dynamic data exchange (DOE), which enables two applications to
update information by automating the manual copying and pasting of data.
The two applications are said to be connected through a link, where the ap­
plication sending data is called the source the application receiving data is
called the destination. Two applications can either exchange data whenever
the data changes in the source application or whenever the destination ap­
plication requests the data. The source may also notify its destination about
data changes and supply the data only on demand.

Links between two applications can either exist permanently or be estab­
lished by the user. Permanent links are automatically established whenever
the source application is run. User-established links provide the flexibility of
integrating arbitrary data of various applications. Besides exchanging data,
this mechanism can also be used for sending commands. For example, one
application can force another one to open or close a file.

DOE provides limited possibilities for communication between applica­
tions. Although useful in many situations, it does not really support the reuse
of applications in order to build new software systems. Program control is
not transferred among applications for the purpose of editing data, and data
does not appear in destination applications as it would in source applications.
Displaying data can require essential programming effort, though this prob­
lem has been solved already in the other application. These drawbacks are
eliminated by cooperative application components as described in Chapter 7.

6.2.4 Programming Interfaces

Some software systems are designed for reuse; they provide a means for
reusing and even extending them, i.e., an application programming interface
or ApI.

Depending on the API and the application itself, reuse scenarios can differ.
For example, an application may have a graphical user interface but allow
its reuse without displaying anything on the screen (for the reuse of certain
functionality). In this case the reuser provides the user interface. If the reused
application's user interface is reused (or has to be reused), it may be possible
to modify or extend the interface (e.g., menu entries) and add functionality
to the application.

This kind of reuse should not be confused with the use of an application.
Users of an application may use an API to modify and/or extend the appli­
cation. With reuse we mean the integration of an application's functionality
into another, new software system.

www.manaraa.com

6.2 Component Interfaces 75

Fig. 6.1. Applications using Tcl/Tk

From the perspective of reuse, APIS are important as they allow the reuse
of full-fledged applications. However, applications often bundle more func­
tionality than may be required in certain reuse scenarios. This leads to un­
necessary overhead. Additionally, two applications together may have the
functionality that is needed, but they may not be reused together because
each one provides its own user interface and cannot be reused in the back­
ground, or because their data formats are not compatible.

6.2.5 Command Language Interfaces

Command languages provide communication mechanisms between interac­
tive programs and can allow reusers even to program both programs' ap­
pearance and actions. By the possibility to extend the built-in features of
programs, command languages boost the power of these programs. Exam­
ples of the provision of powerful command languages are Unix shells [Ker84)
and the Emacs editor [Sta86). However, large-scale software reuse requires
application-independent command languages, so that not every new program
requires a new language to be developed and/or implemented. An exam­
ple of a powerful application-independent command language is Tel [Ous90,
Ous94), available as a C library package. The idea is that the library imple­
ments general-purpose constructs. Individual applications make extensions
for application-specific commands, which is simplified by a set of utility rou­
tines. Tel can be used for communication purposes between applications and
for programming the graphical window interfaces of applications (by configur­
ing an application's interface actions and its interface appearance). Fig. 6.1
shows the basic structure of four communicating applications that use the
command language Tel.

As far as software reuse and software components are concerned, com­
mand languages do not offer a possibility to simply put existing applications
together and build new, more powerful applications. However, they provide
the possibility to integrate existing applications in new ones, e.g., to inte­
grate an existing text editor or debugger into a programming environment.
Or, a text editor and a debugger can communicate and synchronize with each
other; i.e., the editor displays whatever source code line is being executed by
the debugger.

www.manaraa.com

76 6. Software Components

I component I
I
I

r-r-----'-~---T----'
I I I I I
I I I
I I I
I I I
I I
I I
I I
I
I
I

Fig. 6.2. Dependent platforms of a
component

Even though command languages provide a means of communication via
the possibility to easily control applications, they do not offer a way of inter­
connecting applications. This means that applications are still responsible for
reading/inputting commands and can implement this in various ways, e.g.,
by reading from the console or by reading from a port. Connections between
components are not standardized and depend on the implementation of a
component.

6.3 Component Platforms

Even though two components may fit together perfectly by means of their
interfaces, they may require different run-time systems or operating systems.
Unless they can communicate across different processes, this is a hindrance
for combining such components.

By component platform we mean any software a component is built upon.
Typical platforms are operating systems, run-time systems, window systems
and other libraries. Platforms are sets or collections of homogeneous compo­
nents.

Fig. 6.2 shows an example with a source code component that uses rou­
tines from a library and the operating system. Its reuse requires the appropri­
ate compiler and run-time system as well as these routines. A component's
platforms have to be available in order to reuse the component. Addition­
ally, the platforms have to be in harmony with the platforms of the software
system we build. This is the topic of this section.

Generally, components are the more reusable the less platforms they de­
pend on and the more portable these platforms are. Fig. 6.3 shows a compo­
nent which depends on platforms that are not bound to a specific machine.

Table 6.1 shows some examples of components and their platforms. It
is important that platforms may further restrict the reuse of components.
For example, a shell script will not run on all available Unix platforms, but

www.manaraa.com

I

I component I
• I

--------r i ---,----,
I I I I I
I I I
I I I
I I I

I run·time I window I network

1 operating system

hardware

-

6.3 Component Platforms 77

Fig. 6.3. Independent platforms of
a component

only on several of them. A C++ class may need a certain compiler as differ­
ent compilers generate different code for templates. Even certain versions of
platforms may be necessary for the reuse of a component.

Components can be available in different forms. For example, a C++ class
can be available in source code or object code (plus interface description). The
source code version is more reusable as it can be transformed with different
compilers to different object codes for different run-time systems. There can
be limitations, however, when the definition of a programming language is
not strict enough to prevent dependencies of a source code component on a
certain compiler implementation.

Table 6.1. Examples of component platforms

Component Platforms

Ada package Ada-95, Corba, Ada math library

Shell script Unix

Application Unix, Tcl/Tk, X/Windows

C++ class
C++ gnu compiler,
standard 10 library

Smalltalk Smalltalk-80
class

www.manaraa.com

78 6. Software Components

Table 6.2. Examples of execution platforms

Platform Examples

Programming
Smalltalk, Java, VisualBasic system

Operating Unix, Posix, Macintosh, Windows system

Hardware
Intel processor, special-purpose
hardware (robot/plane control)

Successful reuse stories are based on specific platforms, like VisualBasic
controls or Unix pipes and filters. Such components are highly reusable, but
their reuse is limited to these platforms.

6.3.1 Platform Categories

If we have components classified by their platforms we are able to determine
a component's reusability in certain contexts. Based on the role a platform
plays for a component, we distinguish execution and composition platforms.
Execution platforms. Execution platforms are necessary in order to exe­
cute a component. Execution platforms determine the environment on which
a component, i.e., a complete running system, can be executed. Typically, a
component requires a certain operating system for execution, but it may also
require specific hardware or a programming system if it is being interpreted.
Table 6.2 provides some examples.
Composition platforms. Composition platforms are necessary for compo­
nents that do not run on their own but rather have to be integrated with
other components to form an executable program. Compilers and linkers are
the most prominent form of this category. Other examples are libraries for
the user interface, for data storage, or for common services like sorting and
searching.

Mathematical libraries might be statically linked to a software system;
however, a database system might not be linked and become a direct part
of another system. The database might supply an interface for a certain
programming language and provide interface routines which become part of
the system. The database may be accessed via interprocess communication,
but this is hidden in the interface routines. Table 6.3 provides some examples
of composition platforms.

6.3.2 Component and Platform Dependencies

Reuse is burdensome when the reuse has to handle dependencies among com­
ponents. For example, sometimes the reuse of functions requires certain li-

www.manaraa.com

6.3 Component Platforms 79

Table 6.3. Examples of composition platforms

Platform Examples

Code compiler, linker, 4th generation
generation system

Graphical user window system (X/Open, Motif,
interface Macintosh finder, Windows 95)

Data storage file system (I/O libraries),
database access

Common math libraries, sorting/searching,
services containers

Interprocess remote procedure calls, sockets,
communication TCP/IP

Interoperation Tcl/Tk, Corba, OLE, OpenDoc

brary routines. If this is not clearly documented, reusing the functions can be
frustrating. There can be dependencies on platforms as well as on single com­
ponents, such as functions that have been developed for a certain software
system.

If we want to use two components together, they have to share the same
execution platform or have different execution platforms but a common com­
position platform. If they have different execution platforms it is important
that they be executable. For example, a C++ class and a Smalltalk class can
be used together, say, when they both use Corba for interoperation. However,
both classes have to be embedded in some system in order to be executable.

The composition platform plays an important role for the reusability of a
component as well. For example, two C++ classes cannot be used together
when they use different application frameworks, i.e., when they are embedded
in two different application frameworks. Theoretically, it may be possible
to include two different application frameworks or class libraries into one
system, but this leads to overhead and still limits how the two classes can be
combined.

There are relationships among platforms. For example, compilers for pro­
gramming languages typically exist for several different computer systems,
making components implemented in these languages portable and reusable
on these systems. Also, if a class is based on a specific class library, it can
be used on whatever platform this class library is available. Java classes can
be reused on a variety of machines because the Java platform is available on
many different machines, i.e., operating system platforms.

www.manaraa.com

80 6. Software Components

Components that are included in their reuse context (like source code
components) are more restricted by platform constraints than components
that run on their own. Executable components require certain forms of in­
teroperation, like certain protocols, but may run on different machines with
different hardware and different operating systems. The World-Wide-Web
provides an example of such independence of machine characteristics.

A component can be available in different forms, e.g., as source code or in
binary form. The form influences the platform dependencies. If a component is
available in binary form, it is more restricted in its reuse than if it is available
in source code form. This is true unless the binary form is standardized, as
is the case for Java components.

The portability of a component correlates with its reusability. Originally,
portability referred to the ease with which a software component could be run
on different hardware. Today's software components are more complex and
face many dependencies on software platforms as well, e.g., operating system,
window system, run-time system. The easier it is to use a component in
different contexts the higher is its chance for reuse. Low coupling, as described
in Section 8.3 on page 110, is important in this respect as a component is also
(indirectly) dependent on platforms of components with which it interacts.

6.3.3 Open Systems

Software systems are based on several platforms. These platforms can be spe­
cific or open. Open platforms are available for several specific platforms. The
less platform dependencies a component has and the more standardized/open
these platforms are, the more portable and reusable is a component.

Open systems are vendor transparent platforms in which users can mix
and match hardware, software and networks from various vendors [Uma93J.
We eventually want to combine software components from different vendors
on hardware and software from various vendors interoperating over networks
from various vendors. Composability, portability, and integration are critical
for open systems [QW93, Uma93J:

- Composability
Composability means that two components can work with each other
through well-defined interfaces. This is also referred to as portability of
data and information.

- Component portability
Component portability means that components developed on one platform
should be usable on different platforms with no or minimal change. This
can be achieved through developing components by using only standard
interfaces that are available on different platforms.

- User portability
User portability means the ease of switching among user interfaces of dif-

www.manaraa.com

6.3 Component Platforms 81

ferent components. User portability is important due to the high costs of
user training.

- Integration
Integration means the ease with which a component can be used by other
components.

Open systems provide high composability and portability through standard­
ized platforms. These standardized platforms are mapped by many vendors to
their specific platforms. Thus components that use the standardized (open)
platform can be mapped to any of these specific platforms without additional
effort.

Standards are crucial for open systems. Examples are X/Open standards,
OSI standards and Posix standards. For example, a component might be
executable under Unix, yet be restricted to certain Unix implementations.
If Posix is the execution platform, then the component should be reusable
on a larger variety of systems (all Unix systems that adhere to the Posix
standards) .

Open components rely on open platforms, and their reuse scope is broader
than for other, more specific components.

6.3.4 Design Patterns

Design patterns were mentioned in Section 3.6.6 on page 34. We do not con­
sider patterns themselves as software components. However, patterns can be
regarded as platforms similar to class libraries or application frameworks.
To be reusable in the context of a certain class library, a class has to fulfill
certain requirements, e.g., provide particular methods or inherit from par­
ticular classes from this library. The same holds for design patterns. Once
a set of patterns is defined, it should be documented for reuse by defining
abstract classes. This means that every time the pattern is reused the corre­
sponding classes implementing the pattern inherit from the abstract classes
representing that pattern.

McGregor et al. have suggested associating components with design
patterns and facilitating pattern-based retrieval in component repositories
[MDK96]. Components can participate in many patterns and require other
components in order to fully implement a pattern. Components may both be
able to participate in certain patterns and be reusable stand-alone, or they
may require reuse in the context of a certain design pattern.

Design patterns have to be defined for a certain platform, most likely
a class library. In a certain reuse context we may require components for
this class library or, more confined, components that playa certain role in a
specific design pattern.

www.manaraa.com

82 6. Software Components

6.4 Summary

In this chapter we have discussed definitions, interfaces and platforms for
components. We have defined reusable software components as self-contained,
clearly identifiable artefacts that describe and/or perform specific functions
and have clear interfaces, appropriate documentation and a defined reuse
status.

Plugging software components together is often difficult if not impossible.
Components have different interfaces. We distinguish user, data and program­
ming interfaces. Programming interfaces are the primary means of software
reuse, but data and user interfaces have proven to be useful for that purpose,
too.

Components do not exist in a vacuum, but have many dependencies to
other software, e.g., operating system, window system, compiler version. We
distinguish between execution and composition platforms. These categories
contain platforms that are needed for the execution of components (like op­
erating systems) and composition (like compilers, remote procedure call fa­
cilities).

Design patterns also form a platform in that they can be the basis for the
implementation of a component and restrict the component's reuse.

www.manaraa.com

7. Component Composition

Contents

7.1 Forms of Composition............................... 83
7.1.1 Internal/External Composition. 84
7.1.2 Textual Composition 84
7.1.3 Functional Composition. .. 86
7.1.4 Modular Composition. .. 87
7.1.5 Object-Oriented Composition. 87
7.1.6 Subsystem Composition. .. 88
7.1.7 Source Code Parameterization '" 89
7.1.8 Distributed Computing 91
7.1.9 Object Models. .. 92
7.1.10 Compound Documents.................. 94
7.1.11 Component Applications. .. 95
7.1.12 Integrated Environments. .. 96
7.1.13 Open Platform Composition. .. 97

7.2 Forms of Interoperation '" 98
7.2.1 Control and Data Integration. 98
7.2.2 Categories of Interoperation 100

7.3 Composition Mismatches 102
7.3.1 Interface Bridging 104
7.3.2 Interface Standardization. .. 105

7.4 Summary .. 105

Terms like composition, interconnection, interaction, communication and in­
teroperation are closely related. In the literature they sometimes have different
semantics but are often used interchangeably.

In this chapter we deal with various aspects of component composition and
component interoperation. Forms of composition are described in Section 7.l.
Forms of interoperation follow in Section 7.2. Composition mismatches and
possible remedies are described in Section 7.3. A summary follows in Sec­
tion 7.4.

7.1 Forms of Composition

Nierstrasz and Dami define software composition as "the process of con­
structing applications by interconnecting software components through their

www.manaraa.com

84 7. Component Composition

plugs" [ND95]. Plugs are "well-defined ways to interact and communicate
with the component." In the same book De Mey defines component com­
position as "communication between components through their composition
interfaces" [dM95].

We distinguish two basic forms of software composition. On the one hand,
components can be integrated into a system and become an inherent part of
that system. This is the case when source code is compiled and linked to a
system. We denote this with internal composition (internal to an executable
program). On the other hand, components can act independently, i.e., run
on their own. They communicate with other components by means of inter­
process communication, e.g., by remote procedure calls. We denote this ex­
ternal composition. The distinction between active and passive components
in [DvK87] is somewhat similar.

Nierstrasz and Dami further make a distinction among functional com­
position, blackboard composition and composition by extension [ND95] and
among macro expansion, high order functional composition and binding of
communication channels [NM95]. We base our classification thereupon. We
regard blackboard composition as a form of interoperation, which is described
in Section 7.2 on page 98.

7.1.1 Internal/External Composition

We speak of internal composition when components are included in a soft­
ware system, e.g., by linking them to a system or by including their source
code. They exist in the form of source code or executable code and are the
typical subject of today's software reuse. Different levels of abstraction reflect
the historic evolution of abstraction mechanisms provided by programming
languages.

External composition means compositions running as independent pro­
grams. Often such components can be used as complete programs by them­
selves or as part of a software system. For many operating systems large
catalogs of such components exist. For example, many separate components
plus a simple mechanism (see pipes and filters; see Chapter 10) to combine
them exist for the Unix operating system. The environment, e.g., the oper­
ating system, has to provide means of composing components.

7.1.2 Textual Composition

Textual composition is used for macros. Macros are not necessarily compo­
nents and are often used for arbitrary textual replacements. However, they
can represent reusable components that are modified according to parameters
and inserted (duplicated) at the location of their reuse.

Another form of textual composition is the use of parameterizable compo­
nents, i.e., templates or generics. In contrast to macros, syntactic and seman­
tic checks are performed. Examples are generic packages in Ada, templates

www.manaraa.com

7.1 Forms of Composition 85

in C++, and composition in the GenVoca model [BST+94]. These parame­
terizable components have a higher level of abstraction than macros as they
are used in combination with functions, modules or classes. Thus using such
components involves textual composition and functional, modular or object
composition (see next sections).

Macros. Macro expansion may, at first sight, not appear to be a composition
technique. But despite its simplicity and limitations, it is. Macros are reusable
components with clear interface definitions. With a macro processor, we can
reuse macros. Composition in this case is done by textual replacement. This
is a first step to software reuse.

Macros, as for example used in C and C++, are character- and file­
oriented without any notions of scope and type. The main use of the macro
processor is for including interface definitions, defining symbolic constants,
commenting out code, etc. [Str94]. Macros can comprise arbitrary source text,
e.g., part of an expression or function. There is no formally defined interface,
but parameters are usual, and global/shared data can be used also.

Macros are often used to compensate for lacking programming language
features. This is true for C and other languages like PL/S. For example, at
IBM a collection of reusable macros that implement data types have been
developed for PL/S [Bau93].

Possible applications of macros are constants, e.g., preprocessor-defined
identifiers that were used in C programs until the language provided a feature
to define constants, or simple (inline) functions, i.e., preprocessor defined
"functions" that are reused by (automatic) textual insertion (and replacement
of the parameters); e.g., the following is a macro for C to determine the
maximum of two arbitrary values:

MAX(a,b) ((a»(b)?(a):(b))

Macros have the lowest level of abstraction, providing only textual replace­
ments with parameterization. It is interesting that their reuse has not been
superseded by components of a higher level of abstraction. Rather, macros
have kept their raison d'€tre in parallel to modern abstraction concepts like
classes. The C and C++ programming languages provide examples of this
coexistence.

The main disadvantage of macros is that they fail to obey scope and type
rules, which are of utmost importance for software reuse. The interface of
macros is not formally defined, but rather can be arbitrarily chosen by the
user for each component. This increases complexity and makes proper reuse
painful. Additionally, the use of macros can have side effects that may be
difficult to detect.

Macros can be used for any textual replacements. Thus they can also be
used for the generation of higher-level abstractions, e.g., for the generation
of modules or classes.

www.manaraa.com

86 7. Component Composition

Textual composition has disadvantages. Reused components cannot be inter­
changed other than by modifying and rebuilding (i.e., preprocessing, compil­
ing, linking) the reusing component. The reused components do not physi­
cally exist as such at run-time, but are integrated into the reusing component.
Components are merged.

7.1.3 Functional Composition

Functional composition is the most widespread mechanism for component
composition. Components are functions that have parameters and are acti­
vated by a function call with arguments for the parameters. Most program­
ming languages offer this composition mechanism.

Functions (and procedures, i.e., functions without a return value) were in­
troduced to avoid repetitive statements and to divide programs into smaller
units. Parameters are used to transfer data, but global variables can also
be used for information interchange. In the development of software systems,
the concept of functions has proven especially useful for practicing the princi­
ple of stepwise refinement and top-down design. From a reuser's perspective,
functions can be regarded as low-level components that provide some out­
put data for a certain set of input data. Some old-fashioned programming
languages provide only the concept of subroutines, i.e., functions without the
possibility to specify parameters.

Examples of collections of reusable functions include the statistics library
SPSS, the numerical analysis library IMSL, and C function libraries that
can be used for a variety of applications, e.g., input/output, string handling,
mathematical functions.

Disadvantages of functions are that usually only functions written in the
same language can be called (even though it is sometimes possible to cross
language boundaries). Connections between two components are hard-wired
in (one) component, and it is possible to use global variables for information
exchange (e.g., C library functions), which obscures their interface.

Functions have their own scope and a defined interface with type checking.
The separation between interface and implementation of functions allows
their reuse without knowing the implementation. The use of global variables
can diffuse a clear interface definition and complicate reuse.

Coroutines. Coroutines are a variation of functions that, upon invocation,
do not execute from their beginning to their end. Instead, they execute from
the point where execution had last been suspended to a point where execution
is suspended again. Thus a function executes its entire body, whereas corou­
tines might only execute portions of it [DJ95]. Usually two or more coroutines
are designed to work together in a specific way. Stand-alone coroutines that
are designed for reuse in various contexts are not known to the author.

www.manaraa.com

7.1 Forms of Composition 87

Remote procedure calls. The idea of remote procedure calls is to use the
simple function call mechanism for distributed computing. In general, remote
procedure calls provide the same abstraction for component composition as
function calls. Due to the abstractions provided by remote procedure call
mechanisms, differences to regular function calls may not be noticeable at
first sight. However, they enable the composition of components from different
platforms (run-time systems, operating systems, etc.).

7.1.4 Modular Composition

Modules (or packages) are simply collections of data structures and/or func­
tions. However, they have provided an important abstraction mechanism with
data encapsulation and information hiding. In order to build large systems
it is necessary to minimize the interdependencies of components so that they
can be developed separately and reused in different contexts.

Modules avoid implicit interfaces and require complete definition of what
is exported to the reuser of a module. Additionally, modules can have internal
states and change their behavior over time.

Module interconnections depend on import and export commands hard­
wired in the code of a software system. This has some major problems like
forced agreement in name spelling, dispersion of structural information and
forced asymmetry of interaction [Sha94).

Examples of module collections include Ada Math Advantage (consist­
ing of over a hundred frequently used mathematical and utility components,
e.g., signal processing, image processing, linear algebra, interpolation, statis­
tics, and basic math operations), NAG Ada Library (a library of reusable
mathematical source code components), and N.A. Software Ada Encyclope­
dia (containing about 200 high-level routines and many ancillary functions
and type definitions in a wide ranging numeric library).

7.1.5 Object-Oriented Composition

By means of inheritance, object-oriented programming enables the extension
of components without losing compatibility. The composition mechanism is
similar to functional composition. However, through polymorphism and dy­
namic binding different components can be activated via the same 'function'
call.

Through the concepts of encapsulation (like modules and packages), inher­
itance, polymorphism and dynamic binding, object-oriented programming is
advantageous for software reuse. A class may inherit the structure and behav­
ior of another class and additionally extend and modify it. From the reuser's
point of view, the main advantage is that software components, i.e., classes
work together without knowing of each others existence. Thus components
achieve greater independence. For example, a graphics editor can work with

www.manaraa.com

88 7. Component Composition

arbitrary objects (as long as they are presented by a subclass of a certain
(abstract) base class). This spawns the concept of application frameworks,
which provide the additional advantage of design reuse. Plug compatibil­
ity is achieved by a combination of mechanisms and techniques provided
by object-oriented programming languages, such as interchangeable objects,
uniform public interfaces, polymorphic parameters, and dynamic access of
interchangeable operations [Wan94].

The possibility to specialize classes without the need to modify their
source code brings several major advantages to programming [Wan94]:

- reuse of existing source code,
- adaptation of programs to work in similar but different situations,
- extraction of commonalties from different classes, and
- organization of objects into hierarchies.

Multiple inheritance allows derivation from multiple base classes and is a
convenient way of defining new objects as combinations of existing types.

Examples of collections of reusable classes are the Eiffel Base Libraries
(several hundred reusable classes including basic structures like arrays and
strings, fundamental data structures and algorithms; libraries for lexical and
syntactical analysis, for graphics and user interfaces, and for databases and
persistence [Mey94]), the ET++ Class Library (an application framework
with many fundamental data structures like container classes), the GNU
Standard C++ Library, the GUI class library InterViews, the C++ library
for molecular biosequence analysis molbio++, and the NIH Class Library.

Usually classes are not combinable over language boundaries, except
sometimes to modular languages, e.g., from C++ to C. Even though the
object-oriented approach enhances reusability drastically, the problems en­
countered in module reuse are not eliminated.

Distributed objects are the object-oriented version of remote procedure
calls. Challenges for this mechanism are object identification and the transfer
of objects rather than simple data structures. Objects typically have refer­
ences to other objects, which makes it difficult to decide which data to pass
as parameters.

Summarizing, we can say that classes are like modules. In addition to
modules, they provide object-oriented mechanisms like inheritance and dy­
namic binding. This allows more flexibility and increases the reuse potential
of existing code.

7.1.6 Subsystem Composition

Whether the abstraction level of a class or a module is higher is not always
clear and depends on the programming language. If we compare modules of
languages like Modula-2 and classes of languages like Smalltalk and C++,
then classes definitely offer higher abstraction. However, some languages also

www.manaraa.com

7.1 Forms of Composition 89

provide the possibility to combine classes in modules, in which case modules
have to be seen at a higher level than classes, e.g., in Oberon [RW92]. We
adhere to the historic evolution of these concepts and use the term module
as in the programming language Modula-2.

Most programming languages do not provide means of grouping modules
and/or classes to higher units of abstractions, which we call subsystems. Sub­
systems can consist of classes and functions and import and export interfaces.
An implementation of a subsystem must provide the subsystem's exported
interfaces. For composition, a subsystem's imported interfaces must be pro­
vided.

P++ is an example of a language that offers subsystem abstractions
[B092, SB93]. It is an enhanced version of C++ and was primarily developed
to support the Gen Voca model of software system construction, which is the
formalization of domain-independent principles and similarities of software
generators [BST+94]. P++ incorporates the ideas of encapsulation, abstrac­
tion and parameterization. Encapsulation is provided by a component con­
struct for large-scale program construction with subsystems. Abstraction is
supported by standard interfaces (the realm construct). Finally, parameter­
ization supports easy customization and composition of components. Com­
ponents are the basic unit of software system construction. A set of func­
tions and class declarations defines a component's interface. Components
with the same interface belong to a realm and are interchangeable. Addi­
tionally, components can extend their interfaces and still belong to a (more
general) realm. The Predator library is an example of a collection of com­
ponents encapsulating data structures specified as hierarchical composition
components [TBSS93].

Component composition and customization is achieved by parameteri­
zation [BST+94]. This is the key mechanism for component composition,
because components allow not only simple parameterization with constants
and types but also with other components. As Batory argues, this kind of
composition produces hierarchical software systems [B092]. P++ is being
developed and used at a research laboratory at the University of Texas in
Austin. Broader experience is necessary in order to evaluate its usefulness.
Even though subsystems provide an additional abstraction level, the compo­
nents are still constrained to a certain programming paradigm and language.

7.1.7 Source Code Parameterization

In order to make source code more adaptable and thus reusable, parameteriza­
tion has been introduced. Parameterization is achieved by source code skele­
tons with placeholders that can be filled variably, thus producing different
codes from a single skeleton. The placeholders act as formal parameters that
can take values or types as arguments. This parameterization potentiality
allows the user (programmer) to make functions, modules and classes highly

www.manaraa.com

90 7. Component Composition

adaptable. This increases the reusability of these items, as they can easily be
fitted to the actual needs and also work with new, user-defined types without
the need for modification. A typical application of skeletons is the parame­
terization of container classes, which provide vectors, lists, sequences, etc. for
various kinds of objects or types. Parameterization can also be seen as sepa­
ration of algorithm specification and implementation specification [VK89], or
as a separation of type-dependent and type-independent parts [CL95]. Only
the essential properties of algorithms are captured, whereas types and rep­
resentations of the data are left unspecified until actual reuse. There exist
various ways of parameterizing source code, e.g., using macros, using pointers
and using templates or generics.

Macros. Macros provide the possibilities not only to define and reuse simple
source code components but also to parameterize these components in a useful
way and, for example, to define generic functions or even generic classes.
Macro parameters can be used for both ordinary function parameters and for
generic (e.g., type) parameters.

Generic pointers. Weakly typed languages like C allow the use of pointers
(void*) to make functions generic. The idea is that 'generic' pointers are
converted to pointers of known types. This is usually accomplished through
function calls (also via pointers). Such generic components are used by sup­
plying functions with the desired type conversions. Despite its usefulness,
the approach using this kind of generic functions has several drawbacks. For
example, pointers have to be used even for built-in types. There is no type­
checking which diminishes the reliability of such components. Additionally,
functions with the desired type conversions have to be provided [Wan94].

Templates. Templates are another means for parameterizing source code.
They operate at a higher level of abstraction and comply with scope and type
rules. Parameterization through templates avoids the drawbacks of macros
and pointers, but also has problems; e.g., it can cause duplication of simi­
lar program entities and make a software system much larger. Even though
macros and pointers can increase the reusability of source code, templates are
a better (and contemporary) means of parameterizing source code. Realms
in P++ provide a means for parameterizing subsystems (described above).

Examples of collections of generic components are the Booch Components
(consisting of several dozen domain-independent data structures and tools,
each with multiple implementations so that a client can select the represen­
tation that provides the most suitable time and space characteristics), the
Generic Reusable Ada Components for Engineering (GRACE) (a library of
almost 300 Ada software components based on commonly used data struc­
tures such as strings, matrices, lists, stacks, queues, trees), Math Pack (con­
taining over 350 Ada mathematical subprograms in 20 reusable generic Ada
packages, including linear algebra, linear system solutions, integration, dif­
ferential equations, etc.), and LEDA (a C++ library of efficient data types

www.manaraa.com

7.1 Forms of Composition 91

and algorithms, providing basic data types like lists, stacks, queues, trees,
sets, etc.). The Booch components were originally written in Ada; versions
in C++, Smalltalk and Eiffel are also available.

Though reusability is greatly enhanced through parameterization, existing
problems as depicted in the sections about functions, modules and classes are
not eliminated.

Source code parameterization is a textual composition technique because
textual replacement is performed before compilation. However, in contrast to
macros with arbitrary text replacement, templates and realms provide higher
abstraction levels with syntactic and semantic checking by the compiler.

7.1.8 Distributed Computing

Distributed computing plays a major role for component composition. Dis­
tributed computing systems consist of multiple autonomous processors that
cooperate by sending messages over a communications network or by shar­
ing memory. Initially, distributed systems were implemented with conven­
tional sequential programming languages, usually with the help of library
routines designed for sending and receiving messages. Then languages have
emerged that were designed to support the building of distributed systems.
Finally, configuration languages have come forth to make distributed pro­
gramming still easier, more robust and more flexible. Running applications
on distributed computing systems has many advantages, e.g., [BST89j:

- High speed
The turnaround times for single computations can be decreased through
parallelism, e.g., determining the prime factors of large numbers.

- High reliability and availability
In many application domains like airplane or power plant control, reliability
and availability are crucial aspects of the software. Replication of processes
and data can increase the quality of the software in this respect.

- Functional specialization
Large software systems have a variety of functionality, e.g., operating sys­
tems.

- Inherent distribution
Many application domains are inherently distributed and cannot be real­
ized without distributed computing. Electronic mail and file transfer are
examples of such domains.

Processes yield a level of component abstraction that is worth consideration
for software reuse. Functional specialization, like providing file, print and
process services of operating systems, not only yields good performance due
to dedicated processors, but also increases reusability and interchangeability
because various services can easily be separated from the whole system and

www.manaraa.com

92 7. Component Composition

reused in other contexts. Another advantage is that we can mix components
of various programming languages and paradigms. The main drawback is
performance loss. However, the severeness of this drawback depends on the
granularity of a distributed system.

Executable components do not have abstractional concepts associated
with them which have evolved over time (like source code abstractions). The
reusability of such components is primarily influenced by the means that are
offered to communicate with them. An application that can be started but
provides no further interface for communication cannot be composed with
other components. Some tools provide simple command-line user interfaces
using standard input and output. With appropriate support from the oper­
ating system, such tools can be integrated with other components. Reusable
components have to offer some sort of interface. Reusability is higher for com­
ponents with standardized interfaces than with interfaces specific to some
component platforms.

7.1.9 Object Models

Arbitrary software components run on different machines and platforms and
are implemented in various programming languages. To allow the composition
of differing components, they must have a common denominator. Object
models have been developed for that reason. They are primarily used to
simplify distributed computing on heterogeneous systems, but can support
additional functionality, like compound documents (see below).

Corba. The common object request broker architecture (Corba) is a stan­
dard specification by an industry consortium, the object management group
(OMG). Corba was developed in order to simplify distributed computing
on heterogeneous systems. Composition is accomplished through component
interfaces described by an interface definition language (IDL) [MZ95]. Com­
ponents in this context are typically applications.

Among Corba's advantages are the use of an object-oriented paradigm
and the hiding of programming languages' and operating systems' differences.
The object request broker (ORB) plays a central role for the composition
(and interoperation) of applications. Fig. 7.1 depicts how application objects
communicate via the ORB with service components and common facilities
(see Mowbray and Zahavi [MZ95]).

In our terminology Corba objects are components. Thus we should speak
of a component request broker rather than an object request broker. However,
due to the uniform use of the Corba terminology throughout the literature,
we uphold the original terminology as well.

The most important aspects of Corba are the object request broker and
the interface definition language. They provide the vehicle for evolving com­
mon facilities and object services, which can be supplied by various ven­
dors. Service components provide the means for the composition of applica-

www.manaraa.com

application components common facilities

I'
, , II I I! - It ,I l I I 1

~

J - I
object request broker

I -
~

I I I I I I
.1

service components
~

7.1 Forms of Composition 93

I
~

jJ

Fig. 7.1. Object manage­
ment architecture

tions through standard interfaces. Common facilities include standard ser­
vices (e.g., printing) as well as any other, commercially supplied services.

Object request broker. The object request broker is responsible for com­
munication between components. Its functionality is defined in the common
object request broker architecture (Corba). An ORB has to find implementa­
tions for requested operations, perform any needed preprocessing, and com­
municate any needed data. Communication is possible either through static
interfaces or through a dynamic invocation interface (DII). DII is a generic
facility provided by the ORB in order to retrieve interface descriptions at
run-time from an interface repository. This allows clients to utilize opera­
tions that are unknown at the time of compilation.

Interface definition language. An interface definition language has been
defined for Corba in order to ensure language independence. It is used to
describe a component's interface and is then mapped to the programming
language in which the component is implemented. For a client component,
the same interface is mapped to its implementation language. The mapping
is done by an IDL compiler that generates stub programs for clients and
skeleton programs for the component implementation (server component).

In order to utilize an operation of a server, a client calls a local function in
the generated stub. The stub performs all the necessary operations in order to
communicate with the ORB, e.g., marshalling parameters for transmission.
The ORB transfers the client's request to the generated skeleton on the server
side. The skeleton is responsible for parameter marshalling as well, makes
a local call to the requested server's operation, and returns results upon
completion of the processing. Besides regular results, exception information
can also be passed back to the client [MZ95].

Using IDL does not necessarily require that two components be dis­
tributed. Client and server components can also be compiled and linked as a
single application.

www.manaraa.com

94 7. Component Composition

7.1.10 Compound Documents

Many common business applications have bloated into mega-applications; i.e.,
many features have been added over time and versions. The complexity of
these applications is burdensome for both users and developers. An alterna­
tive to mega-applications has emerged, which is called compound documents.
The idea is to create lean software components that work cooperatively rather
than to develop monolithic mega-applications. Thus new applications can be
built by simply wiring together existing components. Such components give
the end user the power of easily integrating applications bought from differ­
ent vendors. The end user partly takes the role of a software developer. This
will result in increased software reuse (and use) and a reduction of the need
for custom software.

Components will have enough functionality and flexibility to satisfy cus­
tomer needs with a combination of purchased software components when
these software components are designed to be reused in various contexts.
Users can concentrate on creating front-end applications, i.e., applications
that handle data from different other applications, e.g., a budgeting system
using components for a network storage facility, a macro language, a data en­
try facility, a chart organization facility, and a budget account management
system. Typically, data can be either linked or embedded. Linked data use a
placeholder instead of the actual data and can be accessed through various
documents. Embedded data are accessible only within a single document.

The lack of communication facilities in applications requires them to in­
corporate functionality that is provided by other applications already. For ex­
ample, window-based debuggers incorporate full text editors. Not only does
this require more development effort, but users must also handle the same
functionality with different tools. Having small applications with reduced
functionality and communication and configuration facilities gives a bigger
boost to software reuse than the isolation, storage and reuse of the source
code components in monolithic applications.

With compound documents the developer's focus shifts from files and
(mega-) applications to single objects. Such objects can, for example, be a
certain range of spreadsheet cells or text. They are implemented as a compo­
nent that can be composed with other, similar components for the creation of
an application. An arbitrary programming model or language can be chosen
for the implementation.

OpenDoc and OLE. There exist two competitive compound document ar­
chitectures, OpenDoc and OLE [Api95, Ren94, RGM94]. OLE 2.0 is Micro­
soft's technology for revolutionizing the way software is built, sold and used;
it provides distributed object computing for applications integration in the
Windows system. OpenDoc is supported by a vendor-neutral association in­
cluding members like Apple, IBM and Adobe. Examples of provided features
include integrated displays, in-place-editing of components and integration
of information across components.

www.manaraa.com

7.1 Forms of Composition 95

Object models provide structures and functions for the integration of ap­
plication components and are the architecture beneath compound documents.
OLE and OpenDoc use different object models, the Component Object Model
(COM) and the System Object Model (saM), respectively.

COM is a general model describing how objects interact with each other.
It provides the possibility to create new objects from existing ones and sup­
ports the naming, finding and linking of objects both on single machines and
platforms and across networks.

The composition of compound documents is ideal for the creation of front­
end applications, which can improve reusability considerably. The primary
purpose is to combine the functionality of applications that allow the user to
edit some kind of data.

The combined use of OpenDoc, OLE and Corba technology for inter­
application communication is possible as well. For example, OpenDoc's Com­
ponent Glue provides a wrapping mechanism to treat OLE objects as OpenDoc
objects.

Like compound documents, command languages (see Section 6.2.5 on
page 75) are also a 'pitfall' for monolithic mega-applications, as they en­
able a component's reuse in different contexts. However, they cannot provide
the tight integration that is possible with compound document technology.
Additionally, command languages can be provided in object models and thus
be available for compound documents automatically. OpenDoc's Open Script­
ing Architecture (OSA) is an example of an automation and scripting API that
supports application-independent scripting, distributed automation and work
flow applications [App95].

7.1.11 COIllponent Applications

Monolithic applications have all their functionality built in. Users can con­
figure and adapt such applications only by predefined means. Any new func­
tionality, e.g. support of a new protocol in a World-Wide-Web browser, has to
be added by software developers and released in a new version of the system
(see Fig. 7.2). All the functionality is hard-wired into the application.

If an application can be extended dynamically, then it can be adapted
by adding the appropriate components. Consider a word processing system,
which may consist of many components like a spell checker, hyphenation,
thesaurus, equation editor, graphics editor, spreadsheets, etc. Not only can
such components be added and removed to configure the application to the
customers' needs, the user may also choose among various components for
the same functionality or add functionality that had not been foreseen at the
time the application was built (see Fig. 7.3).

The user can also combine components from different vendors and com­
bine various functionalities in one application. We are used to having different
tools and applications for different activities. Related activities may be sup­
ported by a single tool or application. We may want to configure a simple

www.manaraa.com

96 7. Component Composition

http

file
transfer

Q)

"§ mail
iii
.0
::J news (/)

animation

etc.

Fig. 1.2. Monolithic application

application that covers everyday activities. These activities will vary among
different users, and software vendors are unlikely to build packages that fit
the needs of all users. One user might pick a mail tool, a news tool, and a
word processor with various goodies like spell checking and graphics, while a
programmer might use the same word processor for writing documentation
or even source code and integrate a debugger into the environment. As these
components are dynamically loaded, complex configurations do not have a
negative effect on performance.

7.1.12 Integrated Environments

Software solutions for various domains have to support a variety of activities.
For example, a financial framework has to retrieve real-time and historical
data from financial information sources, provide various display mechanisms,
include a decision support system, etc. Another well-known example is pro­
gramming environments which combine tools like editors, compilers, debug­
gers, visualization tools and much more.

Reiss has described different approaches to provide all the required func­
tionality of an integrated environment [Rei95a]. Two obvious and simple so-

Fig. 1.3. Component appli­
cation

www.manaraa.com

7.1 Forms of Composition 97

lutions are building the environment as a single system and providing a set
of independent tools.

Single systems provide a uniform user interface and, naturally, a high de­
gree of integration. But they have the drawback of high development effort.
They are closed systems and have restricted extensibility and customizability.
For the user, it is difficult or impossible to add existing tools or new func­
tionality. For the software engineer, single systems get difficult to understand
and maintain because they are large and tend to grow with every new version
release.

On the other hand, sets of independent tools are easier to extend and
customize and require less initial development effort due to the possibility to
reuse existing tools. In order to share data among these tools, they usually
have text files as their primary input and output. This is an advantage for
extensibility but a disadvantage for development and performance due to
duplication of effort and excess file input and output. A disadvantage on the
user's side is the lack of a consistent and integrated environment. Each tool
may have a totally or, sometimes even worse, a slightly different user interface,
an own command language. Lack of communication among the tools forces
the user to do all the integration, e.g., to know which tool's output to use for
another tool's input, or to locate erroneous source code by hand after reading
the compiler messages.

Single systems are common on personal computers, whereas tool sets tend
to dominate workstations. The Unix operating system is the classic example
of an open environment that offers an enormous variety of independent tools.

An integrated environment consists of various tools plus an underlying
communication and integration mechanisms. This mechanism serves as the
glue among the tools and offers many advantages. For example, due to the
high degree of integration the tool set appears to users to be a single, homo­
geneous environment. And newly developed tools can be integrated into the
environment later on without too much pain and hassle.

7.1.13 Open Platform Composition

On several platforms in several domains, component composition works suc­
cessfully. Examples are 4th generation languages, object-oriented application
frameworks and visual programming systems. Composition becomes difficult
when components of different platforms become involved.

Object models provide the next step to enable component composition
and interoperation beyond programming language, operating system and ma­
chine boundaries. Object models can provide mechanisms for various integra­
tion forms, e.g., object linking, object embedding, drag-and-drop support,
and clipboard support for the implementation of compound documents.

Integrated environments demonstrate how a variety of different applica­
tions can be combined in a single environment. No object models support

www.manaraa.com

98 7. Component Composition

this yet, and we do not know yet what functionality we will need to provide
a generic platform for such integrations.

Components are strongly influenced by platforms. If platforms had stan­
dardized communication among each other and if platforms were assigned
to layers with clear interfaces between the layers, component composition
would become more flexible. Object models are first steps in this direction,
but more standards at various levels will be needed to achieve what we call
open platform composition. It is not clear yet how such a platform will look,
what it will support, and what levels there will be.

7.2 Forms of Interoperation

The ability of software components to communicate and cooperate despite
differences in language, interface and execution platform is called interoper­
ability [Kon95, Weg95].

Successful composition of components does not necessarily imply their
successful interoperation. Two components may simply pass control or send
a message to each other. They can also be involved in a more complicated
form of interoperation, e.g., sharing data or using the same components for
data access.

Minsky clearly separates connection and interaction of components (of
programs and the human brain): "First, we must know how each separate
part works. Second, we must know how each part interacts with those to
which it is connected. And third, we have to understand how all these local
interactions combine to accomplish what that system does--as seen from the
outside" [Min85].

The NATO Standard for the Development of Reusable Software Com­
ponents specifies a taxonomy of interface types of reusable software compo­
nents [Bra94a]: subprogram call, task invocation, memory sharing with sub­
program or task, communication via shared file with or without simultaneous
access, and communication via message passing or mailbox mechanism. What
this standard terms interface types is what we see as forms of interoperation.

7.2.1 Control and Data Integration

The central aspect of integrated environments is their integration mechanism.
It should be simple, inexpensive and scalable and easily allow the incorpo­
ration of new and existing tools [Rei95a]. We distinguish between control
integration and data integration.

Data integration. Data integration can be accomplished by means of a
database or a file system. Single-system environments typically use data
structures and can utilize either a database or a file system and can also
maintain temporary data structures for information interchange among the

www.manaraa.com

7.2 Forms of Interoperation 99

Table 7.1. Comparison of integrated environments [Rei95aJ

Type Advantages Disadvantages

Single system high degree of integration, closed system,
shared data structures, large system,

environment consistent interfaces lack of scalability

Loose duplication of effort,

collection of
open environment, inconsistent interfaces,

wide variety of tools little inter-tool tools
communication

Environment high degree of integration, complex databases,
with data shared data structures, modification of tools,

integration open environment hard to extend

Environment wide variety of tools, limited data sharing,
with control open environment, performance,
integration inexpensive possible inconsistencies

various tools. The user can invoke the tools from within an integrated user
interface.

Independent tools tend to rely on the file system and usually have to
be invoked separately and explicitly. Environments can use a database for
integration, which makes it easier to keep the information consistent and lets
new tools access the information. However, databases are complex systems,
may be language-dependent and may not fulfill the requirements of future
tools [Rei95a, Rei95b].

Control integration. Control integration can be used when the tools of an
integrated set do not have to share large amounts of data but rather each
other's services. It suffices to exchange commands and add some parameters.
In addition, they may share information in files and reduce communication to
commands and file names. Passing of messages is adequate for this purpose.
Each tool must have the capability to send and receive messages and must
offer its functionality to other tools through messages.

With control integration, the resulting environment remains a loosely cou­
pled set of tools. New tools can be integrated without too much effort; they
must be endowed with the message mechanism.

Table 7.1 summarizes advantages and disadvantages of single-system en­
vironments, loose collections of tools, environments with data integration,
and environments with control integration [Rei95a].

From the viewpoint of reuse, a loose collection of tools seems to be the best
scenario. Any tools that comply only with minimal standards can be included
in the toolset. For the user, however, this situation is often frustrating because
of the need to deal with inconsistent interfaces and to do integration work

www.manaraa.com

100 7. Component Composition

by hand. These disadvantages do not exist in single-system environments,
which rarely provide any reuse opportunities, however. Environments with
some kind of integration are a good compromise, adding the advantages of
monolithic systems and sets of uncoupled tools. Whether data integration,
control integration or a mixture is better depends on the domain. As Reiss
pointed out, for programming environments control integration is the right
answer [Rei95aJ. A financial framework might need a higher degree of data
sharing.

Unfortunately, components of an integrated environment have to be en­
dowed with the necessary means for communication with other components.
Command languages are a useful means to do this (see Section 6.2.5 on
page 75).

7.2.2 Categories of Interoperation

When two components interoperate, we have a sending component (initiat­
ing the interoperation) and a receiving component. The sending component
activates the receiving component and passes control to this component. The
receiving component reacts to the control input; it performs some action
and, depending on whether communication is synchronous or asynchronous,
returns control to the sending component. Some amount of information is
usually passed along with interoperation. If more extensive data exchange
is needed, components may use another component for that purpose (see
Fig. 7.4).

The receiving component mayor may not be known to the sending com­
ponent. This has a major influence on the flexibility of compositions. Inter­
connections can be between two components (peer-to-peer) , to a fixed set
of components (multicast), and to a dynamic set of components (broadcast).
Static interconnections are peer-to-peer. Dynamic interconnections can be
either peer-to-peer, multicast or broadcast. The data component also mayor
may not be known to both the sender and receiver.

Table 7.2 gives an overview of the categories resulting from these distinc­
tions. We distinguish no, static, dynamic and broadcast for control and data,
which leads to sixteen categories. Some forms of interoperation in this table
seem somewhat exotic, like the combination no control and dynamic data.
However, they do have practical applications.

u:l , .. , ..
data,' data , .. , ..

,,' "" '----':8"'--,1 control .1 R •
Fig. 7.4. Component interoperation

www.manaraa.com

Table 7.2. Interoperability matrix

no
data

static
data

"I/c .. !.
.'2b

90.
~"""':"R s . .. ~ .. ~

:~

7.2 Forms of Interoperation 101

dynamic
data

f4J r-I:q

.-..b.'t]:}

14?:Jf.]

Q:r~"tD

14? :.JD

~ •• R
s .

'-;'''~
!~

broadcast
data

o cp . .

Q:rhm

~~
.... ~

~~~~.~ ~~~s .~.:~ 

Next we describe a few examples of component interoperation and as­
sign them to one of the proposed categories. In Chapter 10 we provide more 
extensive examples with categorizations of components, composition and in­
teroperation. 

- No control 
Components share data without directly communicating with each other. 
For example, two functions can access global variables, but neither of them 
calls the other one directly. Pipes and filters of the Unix operating system 
provide an interesting form of interoperation in this category. Filters do 
not pass control to each other. They simply read input data, do some form 
of processing, and create output data. Through the pipe mechanism one 
filter's output data can be used as input data for the next filter. Thus we 
have an example of no control and dynamic data. 

- Static control 
Function calls (either local are remote) are the typical means of static 
control, i.e., the sending component has a fixed receiver attached to it. 



www.manaraa.com

102 7. Component Composition 

- Dynamic control 
Function calls with dynamic binding are used in object-oriented software 
systems. This is often referred to as sending messages, since the function 
to be called cannot necessarily be determined at compile-time. This has 
many advantages for reuse because objects can be interchanged, allowing 
a more flexible way of composing components. 

- Broadcast control 
Broadcast control is typical for event handling in application frameworks, 
visual programming systems and infrastructures for tool integration. In­
volved components may share separate data. 

- Broadcast data 
Broadcast data is included for orthogonality reasons and is probably 
the most unusual form presented in the interoperability matrix. Forms 
of broadcast data may appear when the data is duplicated in, say, two 
databases and components (indirectly) make their updates to both presen­
tations of the data. 

It is essential for software reuse that components can be composed with­
out to be known to each other. This allows component composition with­
out modifying components (dynamic controQ. For example, a function calls 
a sort function. In order to call a function shellsort instead, the program 
text in the calling function has to be modified. Object-oriented program­
ming provides more flexibility through dynamic binding. A calling object is 
not aware of the call's receiver. This makes this object work with a variety 
of other objects without being modified. Component composition is easiest 
and most flexible when interconnections among components are not point­
to-point. Reusing components is easy in environments where each component 
can react to events generated by any other components and create new events 
without being aware of any recipients. 

7.3 Composition Mismatches 

Both software components and their interconnections have a variety of forms. 
Different packaging of components and different interactions between com­
ponents very often prohibit successful reuse. Component composition and 
interoperability is sometimes compared to electrical appliances that can be 
plugged into wall sockets to connect them with a source of electricity. The 
plugs are standardized so that new appliances can be used right away. Unfor­
tunately, standardization often ends at a country's border. Travellers know 
the problem that the razor they use at home is not plug-compatible in various 
other countries. In this situation adaptors are needed to bridge the different 
interfaces (for composition). 



www.manaraa.com

7.3 Composition Mismatches 103 

In some countries different voltages are used and prohibit compatibility 
even with an adaptor that fits both ends; i.e., composition is possible but 
interoperability is not. These situations require a transformer. Sometimes 
one of the components, the razor, has the capability to use two different 
voltages. 

Unfortunately, software components and their interfaces for interopera­
tion are more complex than electrical appliances. We have multiple standards 
for packaging and communication, and we have legacy code which we can­
not afford to redevelop in order to comply to new standards. But even if we 
complied to a simple standard, e.g., ASCII text for interoperation among any 
components, this would guarantee that components could communicate and 
cooperate. It would not ensure component compatibility, however, because 
different assumptions can be made even about simple text streams. 

Garlan et al. describe architectural mismatches that occurred while build­
ing a system from existing components [GA095). Various categories of as­
sumptions were encountered about the nature of components, about the na­
ture of connectors, about the global architectural structure, and about the 
construction process. Additional reasons for two components failing to suc­
cessfully interoperate are different assumptions about representations, syn­
chronization, semantics, control, etc. [Sha95). 

Inappropriate composition mechanisms of today's software components 
are also reflected in the fact that many components exist in multiple forms in 
order to be used in various contexts. For example, in the Unix environment 
many operations are provided as system calls and as filters. Both versions 
have the same functionality, but cannot be used interchangeably. Shaw has 
listed ad-hoc tricks to connect mismatched components [Sha95). 

- Component modifications 
Modify one of the components in order to cooperate with the other one. 
This is possible when the internals of the component is available. However, 
it is expensive and limits the component to the incorporated form of inter­
operation. When new requirements arise, new modifications are necessary. 
This is definitely not the way to go for large-scale software reuse. 

- Parallel component versions 
We have mentioned the example of Unix operations that exist in parallel 
with different forms of composition. Again, parallel versions may be a short­
term solution but cannot be accepted on the long run (even though having 
parallel components has long been practiced). 

- Adapters/wrappers 
Wrapping components is very common in solving interoperation problems. 
For example, tools with textual interfaces can be wrapped and integrated 
in window-based environments. This solution avoids direct modification of 
the component and is more flexible, as new wrappers can be developed to 
integrate the component in other environments. 



www.manaraa.com

104 7. Component Composition 

- Components with converters 
Components can be provided with various converters. Many of today's 
desktop applications are capable of reading and sometimes writing several 
file formats. This allows the exchange of data among many applications 
(by hand). 

- Multilingual components 
Multilingual components can be executed on various platforms without any 
modifications. Examples are applications for the Apple Macintosh that run 
on Motorola's 680xO and PowerPC processors. The fat binaries, as they are 
called, do represent an intermediate form as described above, but contain 
executable code for both processors. Using fat binaries allows Apple to 
change the processor family in its computers without sacrificing upward 
compatibility. The price to be paid is the overhead of roughly doubling the 
size of the components. 

- Intermediate forms 
Using an intermediate composition form can be useful when many different 
components are involved. Defining a standard for such a form may foster 
many components which can easily be reused in this environment (see 
Sections 7.3.1 and 7.3.2). 

There is no generic solution for solving two components' inability to commu­
nicate and cooperate. Most of the listed tricks are helpful in many situations 
by either preventing or solving composition mismatches. However, they do 
not provide a solution to the reuse problem itself; i.e., they do not provide a 
solution that improves components' capabilities for composition in general. 

Interface bridging and interface standardization are two major mechanisms 
for the solving of component mismatches. They can be further classified ac­
cording to whether they handle composition at the point of the procedure call 
(procedure-oriented composition) or at the point of objects (object-oriented 
composition) (see Konstantas [Kon95] and Wegner [Weg95]). Remote proce­
dure calls (RPC) are a common way to handle procedure-oriented composi­
tion. Composition in object-oriented systems is more difficult because objects 
cannot simply be decomposed into sets of independent operations and data. 

7.3.1 Interface Bridging 

Interface bridging overcomes the differences between interfaces. Interface 
transformation languages are used to express how an offered interface can 
be transformed to the requested interface [Kon95]. This allows clients in a 
distributed environment to access services from different servers without us­
ing different interfaces for each server. 

Problems with procedure calls arise when interfaces requested by clients 
do not match, at least not exactly, interfaces offered by servers. In this sit-



www.manaraa.com

7.4 Summary 105 

uation languages can be used to declare how actual parameters of a client's 
procedure call have to be transformed and arranged in order to match the 
formal parameters of the server's procedure. Based on such a declaration, 
code can be generated automatically for handling needed transformations at 
run-time. Typically, parameter transformations are restricted to basic types 
like integers, characters, strings, arrays, etc. 

Object-oriented interface bridging requires two steps: interface adapta­
tion to define relations between types on different environments and object 
mapping to support the interoperation at run-time. The static part of ob­
ject mapping is responsible for the creation of classes which implement the 
specified interoperation. The dynamic part has to instantiate and manage 
the objects which are used during the interoperation. 

Procedure-oriented interface bridging is provided in the Polylith system, 
while the Cell framework is an example of object-oriented composition by 
interface bridging [Kon95]. 

7.3.2 Interface Standardization 

Interface standardization addresses interfaces under which services are of­
fered. Interface definition languages are used to express specific interfaces 
in a programming language independent way [Kon95] (see Section 6.3.3 on 
page 80). 

Object models like Corba [MZ95] provide interface standardization. They 
provide a common layer for the transparent exchange of messages (see Sec­
tion 7.1.9 on page 92). 

7.4 Summary 

We distinguish between activities of software engineers and activities of com­
ponents. Software engineers put components together; i.e., they compose or 
interconnect components to build new, more complex components. Once com­
ponents are interconnected, they can communicate, interact or interoperate. 
We do not further differentiate these and use the terms composition and inter­
operation for the two activities. Composition and interoperation are closely 
interrelated. For example, if two components cannot interoperate, we can­
not put them together. In this case they are incompatible and we have a 
composition mismatch or an interoperability mismatch. 

Composable software has a higher degree of flexibility than monolithic 
software. Different languages and environments facilitate software composi­
tion to different degrees by supporting different notions of components and 
compositions. It is easier to recompose software in order to meet new require­
ments instead of modifying a monolithic creation. There exist examples of 
successful application of software composition in certain domains like user 



www.manaraa.com

106 7. Component Composition 

interfaces, application frameworks, programming environments and 4th gen­
eration languages, but a general model of software composition does not yet 
exist [NM95). 

There are a variety of components and plugs. The crucial point in 
component-oriented software development is having a selection of reusable 
components that are plug-compatible. The higher the granularity of the com­
ponents is, the higher the increase in software productivity can be. Putting 
objects or applications together is more effective and productive than plug­
ging macros together. 

Object models as platforms for component plugs are gaining importance 
in the field. Currently much work is being done in this area and we can expect 
improvements in the near future. 

Many topics on languages, tools and methods are open for research in 
software composition. For example, composition languages that support the 
glue for the composition of components are a current topic for research (see 
Nierstrasz [Nie95)). 



www.manaraa.com

8. Component Attributes 

Contents 
8.1 Functionality ........................................ 101 
8.2 Interactivity ......................................... 108 
8.3 Interaction .......................................... 110 
8.4 Concurrency ........................................ 110 
8.5 Distribution ......................................... 111 
8.6 Forms of Adaptation ................................ 113 
8.1 Quality Control ..................................... 113 
8.8 Summary ............................................ 114 

In the previous chapters we identified various aspects of software components, 
such as platforms, composition and interoperation. Now we deal with various 
attributes of components that allow us to better classify components. Some of 
the attributes are platform specific, others are component-specific. Attributes 
may also be specific to certain platforms and specific to components on other 
platforms. 

In this chapter we identify and describe the following attributes of software 
components: functionality in Section 8.1, interactivity in Section 8.2, inter­
action in Section 8.3, concurrency in Section 8.4, distribution in Section 8.5, 
adaptation in Section 8.6 and quality control in Section 8.7. A summary 
follows in Section 8.8. 

8.1 Functionality 

The functionality of a component is essential for its reusability in a certain 
context. If we need to sort items, a component for binary searching is useless. 
A functional component typically offers a certain service such as sorting or 
searching (it does something).Components with higher level of abstraction 
like classes and applications provide behavioral interfaces that include several 
operations. 

It is easy to determine whether a function's functionality fits the needs for 
a reuse scenario: it is either needed or not. When components comprise many 
operations, this question becomes harder to answer. Components' function­
ality may partially overlap, be too specific or too general, or be incomplete. 



www.manaraa.com

108 8. Component Attributes 

Applicability, generality and completeness of a component are important for 
their reusability [BR92J. 

Component applicability. The applicability of a component is its likeli­
hood to be a reuse candidate in the range of software systems for which it was 
designed to be reused. A component's applicability can be high for a certain 
application domain and low or zero for others. For example, a component for 
handling an aircraft's landing gear can have high applicability in the aviation 
domain, but is completely useless in the programming environment domain. 

Component generality. The generality of components typically increases 
their reusability. A component sorting numbers is less likely to be reused than 
a component sorting arbitrary objects. High generality of a component means 
also high applicability of this component. However, care has to be taken 
not to overgeneralize a component. Excessive generality leads to complex 
components and unnecessary overhead in both execution time and resource 
consumption. 

Component completeness. Completeness of a component is difficult to 
capture, yet important for reuse. We can say that a component is complete 
when it offers the functionality expected by reusers in its intended reuse 
scenarios. A clear example of an incomplete component is a stack missing the 
pop operation. A missing top operation is less severe as it can be imitated 
with a pop and a push operation. Yet the component is considered to be 
incomplete if the top operation is frequently needed. 

8.2 Interactivity 

Interactive components have unpredictable inputs from an external environ­
ment. Macros and functions are noninteractive components. Objects and ap­
plications are typically interactive. We demonstrate some general differences 
between noninteractive and interactive components by comparing functions 
to objects (see Wegner [Weg93]). 

Table 8.1 summarizes basic differences between functions and objects. 
Function-oriented systems transform an initial state to a final state (tran­
sition systems). All the input has to be specified before computation can 
begin. The result is delivered when the function stops computation. Endless 
loops are considered to be erroneous because they prevent the function from 
yielding the expected results. By contrast, objects are reactive. They react to 
messages they receive from other objects by doing some computation and/or 
sending messages to other objects. The connections among objects are looser 
than among functions, which makes incremental changes easier. 

Functions do not have memory. Here we do not consider global or static 
variables which can be used to add memory to functions. Thus functions' 
computations always yield the same results with the same inputs. Objects 



www.manaraa.com

8.2 Interactivity 109 

Table 8.1. Properties of functions and objects [Weg93) 

Properties Functions Objects 

Behavior 
like verbs, like nouns, 

they do something they are something 

Specification with input/output functions with behavioral interfaces 

Memory no memory (same effect on memory of past events 
every invocation) (time-varying behavior) 

self-destruction after persist while reacting to 
Persistence completed invocation multiple invocations by 

clients 

Complexity by computation cost by life-cycle cost 
measure 

Computation functional and algorithmic interactive 
models 

have an internal state and a certain behavior, which usually depends on 
the internal state and thus can vary from time to time. Once the results 
of a function are delivered, there is no need for the function to exist any 
longer on the machine. Objects may be destroyed also, but their lifetime 
usually spreads over a much longer period and is not constrained by single 
computations. Functions are destroyed and are simply newly created if their 
computation is needed again. The behavior of objects is too complex to be 
described with simple input/output functions. 

The complexity of functions is often measured by computation costs. Con­
sider the variety of available sort functions like bubble sort, insert sort and 
shell sort. Their main characteristic is their run-time, which depends on the 
number of elements to be sorted. For large n it is crucial whether an algorithm 
sorts in n I09n or in n2 . Typically, such considerations are less important for 
objects because their operations are less complex. Part of the complexity 
shifts from objects themselves to their interaction. This makes the develop­
ment of software systems more difficult because the complexity of interaction 
extends far beyond the internal complexity of functions. 

Another distinction can be made between proactive and reactive compo­
nents. Reactive components become active only when they get a request from 
another component. Proactive components become active on their own. For 
example, a timer component might become active whenever a certain amount 
of time has passed and might broadcast a timing signal (broadcast control). 
This, on the other hand, can cause reactive components to become active. 



www.manaraa.com

110 8. Component Attributes 

8.3 Interaction 

A component can interact with other components (component interaction) 
but also with the human user (user interaction). Both forms influence the 
reusability of a component. 

Component interaction. Reusable components should have high cohesion 
and low coupling. This means that the interface of a component should have a 
high degree of conceptual unity and that the dependence on other components 
should be small [BR92]. 

For example, classes can easily be reused in their programming language 
domain if they have no dependencies on other classes. Often they strongly 
depend on classes of a certain library, e.g., an application framework. In this 
case certain dependencies of some classes in this set may restrict the reuse 
of all classes. If an application framework is implemented on top of a certain 
window system, then its use may be restricted to this window system unless 
its designers have considered portability to other window systems. 

High coupling can discourage the reuse of a component even if it is tech­
nically feasible, because all the components on which it depends might have 
to be incorporated into the design. Additionally, this can lead to penalties in 
execution speed and memory usage [BR92]. 

User interaction. A component can interact not only with other compo­
nents but also with humans. In this case it needs some sort of a user inter­
face like a window or textual input/output facilities. For reuse it is essential 
whether a component has a user interface directly attached to it. In most 
cases having an attached user interface will decrease its reusability. 

User interaction does not necessarily exclude a component from being 
reused in a software system. For example, editors can be integrated in pro­
gramming environments. However, user interaction of a component might 
interfere with user interface guidelines of a software system or even be in­
appropriate because, for example, the system sets parameters rather than 
letting the user do so. 

8.4 Concurrency 

Execution of concurrent components overlaps in time. The textual order of 
the computations does not define the order of execution. Thus concurrent 
components can behave nondeterministicallYi i.e., they do not necessarily 
deliver the same results when run with the same input data [BD93]. Reasons 
for running components concurrently include [BD93]: 

- Gains in execution speed 
by assigning different physical processors to different processes 



www.manaraa.com

8.5 Distribution 111 

- Elimination of potential processor idle time 
by sharing the processors among a number of components running as con­
current processes 

- Inappropriateness of sequential model 
for inherently concurrent and nondeterministic problem domains 

Concurrent components can be defined in a certain programming language 
and can be compared to functional abstraction. Usually they are executed on 
a single processor and communicate via shared variables. However, they have 
their own thread of control and need a means for communication. In contrast 
to functions, invoking a concurrent component does not require waiting for 
completion. Synchronization is necessary if two components, for example, 
share any kind of resource. 

Generally, source code components are not concurrent unless program­
ming languages are used that explicitly support concurrency. However, exe­
cutable components are usually inherently concurrent. 

In the context of components we can distinguish between intraconcurrency 
and interconcurrency. Concurrency may happen within a component but not 
among components. For example, tools my be implemented concurrently in 
a concurrent programming language. Yet these tools may be interconnected 
via the Unix pipe mechanism, resulting in sequential processing. On the other 
hand, sequential components may run concurrently and communicate on dif­
ferent processors, e.g., client/server programs. 

8.5 Distribution 

Distributed components are logically and sometimes geographically separate. 
The main reasons for the popularity of distribution are not cost considerations 
but increased capabilities, greater flexibility of incremental expansion, and 
choice of vendors [QW93]. For increased reusability we want to use, buy 
and sell components for a variety of platforms. Thus components must be 
able to communicate and exchange data, i.e., interoperate among distributed 
platforms. 

Distributed computing systems can be realized on a variety of architecture 
models such as the following: 

- Vector computers 
same arithmetic operations applied to different data 

- Data flow machines 
different operations applied to different data 

- Multiprograms 
multiple processes on one processor 



www.manaraa.com

112 8. Component Attributes 

- Multiprocessors 
multiple processes on multiple processors sharing memory 

- Multicomputers 
multiple processes on multiple processors passing messages 

- Networks 
multiple processes on multiple processors connected by local area and/or 
wide area networks 

This creates a distinction between logically and physically distributed soft­
ware and hardware. Logically nondistributed software can be executed on 
physically nondistributed hardware (traditional configuration) and on physi­
cally distributed hardware (vector computers, data flow machines). From the 
viewpoint of reuse, physical distribution does not have any advantage over 
physical nondistribution. Logically distributed software can also be run on 
physically nondistributed hardware (multiprograms, multiprocessors, multi­
computers) and on physically distributed hardware (multicomputers, net­
works). Logical distribution opens the door for software reuse. As long as 
the communication protocol between two processes is met, they can easily be 
replaced and/or reused in other contexts. 

In a distributed system the unit of parallelism is not necessarily a process. 
The unit of parallelism offered by various programming languages ranges 
from processes to objects, statements, clauses and even expressions [BST89]. 
However, in the context of software reuse we are only interested in high 
abstractions; thus we neglect low-level units like statements and expressions. 
Distinctions can also be made according to the kinds of interprocess protocols 
being used. One common form of distributed system architectures is the 
client/server organization [And91, GS94]. 

For reuse we consider a distributed system simply as consisting of sev­
eral interacting components. Strongly coupled components as encountered on 
vector and data flow machines are excluded. We are primarily interested in 
weakly interdependent components and their compatibility. This essentially 
relates to communication issues, which determine whether components can 
be replaced by other components, whether components can be reused in the 
context of a new system, and whether an existing system's functionality can 
be extended by adding a new component. 

A distributed system consists of independently executing components. 
They can be implemented in the same programming language using com­
munication mechanisms provided by that language. However, they can also 
be implemented in different programming languages and paradigms using 
language-independent mechanisms for communication. Besides data sharing, 
message passing is the central means for these components to communicate. 



www.manaraa.com

8.6 Forms of Adaptation 113 

8.6 Forms of Adaptation 

What happens to a component between the time a decision is made to reuse 
it and the time it becomes part of the software systems is referred to as adap­
tation [MMM95]. We can distinguish between adaptations that were foreseen 
and provided for by the creators of a component and adaptations made pos­
sible through a component's technology. We call the former customization 
and the latter modification. 

As an example of customization, consider Unix tools that can be used as 
filters. For most of them, options can be specified which enhances the poten­
tial of their reuse. Object-oriented technology is a good example of inherent 
adaptation means for components. The inheritance mechanism allows modi­
fications that have not necessarily been foreseen by the developers of a class 
to be reused. However, adaptation is still limited. Components have to be 
designed for reuse and must provide means for customization. 

On the source code level, templates/generics provide a limited means 
of adaptation. Copying a component and modifying the copy is always a 
possible form of modification but creates multiple versions and inconsistencies 
of components. A component has to be designed for reuse. Technical support 
for this purpose is available at different levels of abstraction and varies among 
the various kinds of components. 

P++ is an example of a language that offers subsystem abstractions (see 
Section 7.1.6 on page 88). Realms as presented in P++ provide advanced 
customization features at the source code level. Having components as pa­
rameters for components can simplify the customization of large software 
systems like operating systems. This can also lead to increased design reuse 
by simplifying the reuse of application frameworks. However, widely used 
programming languages still lack features at this level of abstraction. 

8.7 Quality Control 

The availability of high-quality, reliable software components is essential in 
order to build high-quality, reliable software systems. A market of reusable 
software components will not evolve without some sort of guaranteed quality. 
Unfortunately, the dream of formal verification is unrealistic and achievable 
at best with small source code components. We cannot expect to formally 
guarantee the correctness of software components in order to build large­
scale software systems. Thus we have to build our software systems out of 
components that may be faulty. The goal of fault tolerant software is to 
make sure that a software system does not fail even when it contains faulty 
components [JaI94]. Fault tolerance also concerns faulty input, unpredicted 
events, hardware failure, etc. 

The idea of designing by contract has been realized in the programming 
language Eiffel [Mey92]. Preconditions, postconditions and variants are used 



www.manaraa.com

114 8. Component Attributes 

to characterize classes and to assure their correct behavior. Preconditions 
are boolean expressions that are used to check that input arguments are 
valid and that an object is in a reasonable state to do a requested operation. 
Similarly, post conditions assure that a method has successfully performed 
its duties, i.e., fulfilled its contract with the caller. Invariants are checked 
every time a method passes control to a separate object. Checking boolean 
expressions can help in improving the quality of source code components 
and the correct cooperation of components. However, the correctness of the 
assertions remains to be proven. If a check fails, an exception is raised. 

Exceptions are another means of improving quality and fault tolerance of 
source code components [Str94]. Exceptions are conditions that require im­
mediate action and are especially important for error handling. Compared to 
function calls, exceptions occur infrequently in a (typical) software system. 
Usually, subsystems, i.e., a collection of functions/modules/classes, rather 
than single functions are provided with this kind of fault tolerance. From 
the perspective of reuse exceptions provide a means of making components 
more reliable. The interface to the component becomes more sophisticated 
and requires careful treatment of all possible exceptions raised by the reused 
component. These exceptions become part of the interface to the component. 
Exceptions can be either built-in or user-defined. They make components 
more reliable by handling exceptional situations and by allowing other com­
ponents to take corresponding actions. 

Two methods for organizing diverse designs in order to build fault-tolerant 
software are the recovery block approach and N-version programming [JaI94]. 
The main idea of these approaches is to use multiple components for the same 
functionality. 

Distributed components not only solve problems but also introduce new 
ones, e.g., partial failure and deadlocks. They pose the possibility of inde­
pendent failures; i.e., individual components can fail while others still run. 
Usually the system should continue working after one or more components 
have failed. Components can either provide some handling of certain failures 
themselves (e.g., by using backup processes) or leave that responsibility to 
another component (e.g., a supervisor process). Especially in loosely cou­
pled systems, components also have to deal with unreliable communication 
channels. For example, messages may get lost even if both the sender and 
the receiver are working. Various levels of fault tolerance exist, e.g., reliable 
point-to-point messages and atomicity of actions. 

8.8 Summary 

Table 8.2 summarizes attributes of components and provides examples in each 
category. The upper part of the table (functionality, component interaction, 
and user interaction) is more component-specific. The lower part (form of 
adaptation, concurrency, and distribution) is more platform specific. Quality 



www.manaraa.com

8.8 Summary 115 

Table 8.2. Attributes of components 

Attribute Examples 

Functionality sorting, menu handling, 
database management 

Component function call, database query, 
interaction server contact 

User dialog-box, window display, 
interaction terminal input 

Quality tests, verifications, compiler checks, 
control assertions, process backups 

Form of parameters, inheritance, modification 
adaptation 

Concurrency semaphores, critical regions, monitors 

Distribution client/server, World-Wide Web, 
file transfer 

control is somewhere in the middle because platforms can provide tremendous 
help for it (e.g., type checks of compilers), but quality still is a component­
specific matter which, for example, requires thorough testing and long-term 
experience with a component. 

Some attributes are more specific for components than for component 
platforms. For example, components may be concurrent and/or distributed. 
This is specific to a certain component, but the component's platform deter­
mines whether concurrency and/or distribution are possible at all. 



www.manaraa.com

9. Component Taxonomy 

Contents 

9.1 Taxonomy ........................................... 111 
9.1.1 User and Data Interfaces. . . . . . . . . . . . . . . . . . . . . . . .. 117 
9.1.2 Composition and Interoperation ................... 119 
9.1.3 Platforms and Attributes ......................... 120 
9.1.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 122 

9.2 Related Work ....................................... 122 
9.2.1 Structures, Tools and Subsystems ................. 122 
9.2.2 Scope, Purpose, Granularity and Abstraction ....... 123 
9.2.3 Active and Passive Components. . . . . . . . . . . . . . . . . .. 124 
9.2.4 State, Inheritance, Concurrency and Distribution .... 127 

9.3 Summary ............................................ 128 

A taxonomy for reusable components provides a framework for creating and 
retrieving components. Component categories make it easier to determine the 
reuse potential of specific components. A taxonomy also helps in evaluating 
the state of today's component reuse and in recognizing future potential for 
reuse. 

In this chapter we provide a taxonomy for software components. In Sec­
tion 9.1 we introduce a taxonomy based on the contents of the previous three 
chapters. A comparison with existing taxonomies is presented in Section 9.2. 
A summary follows in Section 9.3. 

9.1 Taxonomy 

In Chapters 6, 7 and 8 we described various aspects of software components. 
Now we factor out distinguishing characteristics and provide a taxonomy for 
components. We base the taxonomy on components' interfaces, composition 
techniques, platforms and attributes. 

9.1.1 User and Data Interfaces 

Components (especially applications) that do not provide explicit reuse sup­
port can be combined and reused under certain circumstances. Even if they 



www.manaraa.com

118 9. Component Taxonomy 

Table 9.1. User interface levels 

Level 2: Graphical user interface 

Levell: Command-line interface 

Level 0: None 

do not provide a programming interface, user interfaces and data interfaces 
may be used for that purpose. Below we summarize user and data interfaces 
and present different levels of reuse support. 

Components are not restricted to one interface, but may have several. Any 
one of the interfaces can be used for reuse purposes. Programming interfaces 
are considered in the next section. 

User interfaces. We distinguish three different levels of user interfaces (see 
Table 9.1). Various ways exist to reuse components by means of their user 
interface, e.g., pseudo ttys or dynamic data exchange (DDE). 

Unless components have been designed for reuse, their reusability is re­
ciprocal to their user interface level. Components without a user interface are 
easier to reuse than components which interact with the user. This is true 
both for source code components and for full-fledged applications. 

Compound documents provide a means for the composition of components 
with graphical user interfaces. However, the composition is done by means of 
programming interfaces. 

Data interfaces. Input and output of components can take many forms. 
From the point of reuse, only simple input/output is worthwhile because 
complex data formats limit the number of components available for reuse. 
Additionally, data formats may change over time; e.g., when new require­
ments arise, old components may have to be modified accordingly. 

Table 9.2 lists data interface levels. Textual input/output has proven suc­
cessful for reuse. However, similar to user interfaces, the reusability of com­
ponents is reciprocal to the data interface level. We refrain from making an 
extensive classification for extensive data I/O and differentiate only specific 
file I/O and database I/O. 

Unix filters and pipes are the prominent example of successful reuse with 
(textual) data interfaces. Putting two filters together with a pipe does not 
require any programming. This eases reuse, but also limits possibilities of 
application. Also, the structure and semantics of text can take different forms. 

Table 9.2. Data interface levels 

Level 3: Database I/O 

Level 2: Specific file I/O 

Levell: Textual I/O 

Level 0: None 



www.manaraa.com

Table 9.3. Composition categories 

Level 8: Open platform composition 

Level 7: Specific platform composition 

Level 6: Object model composition 

Level 5: Subsystem composition 

Level 4: Object-oriented composition 

Level 3: Modular composition 

Level 2: Functional composition 

Level 1: Textual composition 

Level 0: None 

9.1 Taxonomy 119 

Thus two components may have textual input/output and be composed, but 
their interoperation may not be useful if they are based on different semantic 
structures of the text. 

9.1.2 Composition and Interoperation 

Programming interfaces represent the most important aspect for reuse. In 
Section 7.1 on page 83 we discussed various forms of component composition, 
ranging from simple textual composition to open platforms. Composition 
levels for reuse are summarized in Table 9.3. We do not know yet exactly 
what an open platform will be and how it will look. Component composition 
at this level is an area of quickly changing technology and the next couple of 
years might drastically change/extend the upper part of the compositional 
landscape. 

In Section 7.1 on page 83 we also mentioned source code parameterization, 
distributed computing, compound documents and compound applications in 
addition to the levels listed in Table 9.3. These items are not included because 
they can be assigned to the given levels. For example, compound documents 
are realized by means of object models. 

In the taxonomy we do not explicitly consider forms of interoperation as 
depicted in Section 7.2 on page 98. The interoperation categories describe 
the way components interact. This is influenced by the kind of composition 
that is used. However, various forms of interoperation can be used for certain 
levels of composition. For example, two functions can simply call each other 
without any data transfer, use global data, use other functions for data access, 
or use function variables for dynamic calls. 



www.manaraa.com

120 9. Component Taxonomy 

Table 9.4. Platform categories 

Level 4: Programming languages 

Level 3: Libraries 

Level 2: Programming system 

Levell: Operating system 

Level 0: Hardware 

9.1.3 Platforms and Attributes 

Many aspects and attributes of components are determined by their plat­
forms, e.g., programming language, operating system or distribution. Other 
aspects and attributes are specific to individual components, e.g., user inter­
action or quality. 

In order to support systematic reuse, we have to overcome the boundaries 
of component platforms. The goal is to have highly reusable components 
available in many reuse scenarios, not only for projects developed on/with a 
certain operating system and/or programming language. 

Table 9.4 lists five platform categories. This is only a rough representation 
of platforms. A more detailed classification is possible. We stick to this simple 
form because components can be assigned to more than one platform and be­
cause platforms in the same category can have different reuse characteristics. 
Therefore a more detailed classification is not necessarily more useful. 

The standardization of platforms is important for increased reusability of 
components. For example, the definition of virtual machines is one step in this 
direction. Java is a programming language whose programs can be executed 
on many different platforms without recompilation, even when they have a 
graphical user interface. This portability not only increases widespread use 
of such programs, but also provides a platform for increased reusability of 
components. 

Component attributes as described in Chapter 8 are not suitable for com­
ponent classification. As with interoperation some attributes are influenced 
by the kind of composition that is used; for example, component inter activity 
is a matter of fact for classes, modules and applications. Means of adaptation 
are partly determined by the technology used. Inheritance is possible only 
when using object-oriented composition. Adaptation is also specific to indi­
vidual components and depends on what component designers have foreseen 
for adaptation. 

In order to come closer to the goal of developing software systems out 
of reusable components, we need open platforms and flexible techniques for 
composition. 



www.manaraa.com

9.1 Taxonomy 121 

Fig. 9.1. Reusable software compo­
nents (taxonomy) 



www.manaraa.com

122 9. Component Taxonomy 

9.1.4 Smnmary 

Fig. 9.1 presents the complete taxonomy for software components. We distin­
guish three different types of interfaces (user, data and programming inter­
face) and platforms of components. A component is characterized by assign­
ments to several of the presented categories. Examples presented in Chap­
ter 10 demonstrate this. 

9.2 Related Work 

Several classifications of components have been provided in the literature. In 
this section we briefly discuss several of these and provide a comparison to 
the approach presented in the previous section. 

9.2.1 Structures, Tools and Subsystems 

Booch has divided components into three major groups of abstractions, i.e., 
structures, tools and subsystems [Boo87). Structures are components that 
denote objects or classes of objects (abstract data type), tools are components 
that denote algorithmic abstractions targeted to structures and subsystems 
are components that denote logical collections of cooperating structures and 
tools. This distinction is shown in Fig. 9.2. 

Structures are derived from elementary types, i.e., atomic types (bit, byte, 
integer, etc.), composite types (arrays, records) and pointer types. The dis­
tinction between monolithic and polylithic structures, as shown in Fig. 9.2, 
is made based on whether the structures are always treated as single units, 
i.e., whether individual parts of the structure can be manipulated. Trees are 
considered polylithic structures, as links may exist to various nodes of a tree, 
allowing individual modifications of these nodes from outside the tree. Stacks 
do not necessarily have to be monolithic, nor trees to be polylithic. Which of 
these attributes is applicable depends on the implementation of a component. 
Booch sees structures and tools to be implemented as generic Ada packages, 
whereas subsystems represent larger abstractions (collections of packages). 

Additionally, Booch introduced forms to classify time and space require­
ments. Forms are applicable primarily to structures, but also to tools and 
subsystems. The categories of forms deal with concurrency (e.g., sequen­
tial, concurrent), space (bounded, unbounded), garbage collection (unmanaged, 
managed, controlled) and iterators (noniterator, iterator). For more details on 
forms, see Booch [Boo87). Margono and Berard propose a modification to the 
temporal and spatial behaviors in Booch's taxonomy [MB87). 

Comparison. Booch classifies data structure components, i.e., source code 
components. This provides a fine granularity, but is restricted in the context 
of reuse because data structure components are only one aspect of reusable 
software components. 



www.manaraa.com

9.2 Related Work 123 

Fig. 9.2. Booch's taxonomy 
of reusable components 

Booch suggests the three abstraction groups structures, tools and sub­
systems in the context of Ada packages. We regard structures and tools as 
components with modular composition. Booch's subsystems correspond to 
subsystem composition. However, Ada does not provide language support 
for the notion of subsystems. We do not reflect Booch's distinction between 
structures and tools or his forms to classify time and space requirements. We 
provide a much broader range of components and do not consider detailed 
distinctions in all (sub ) categories. 

9.2.2 Scope, Purpose, Granularity and Abstraction 

Kain uses the characteristics scope, purpose, granularity and level of abstrac­
tion to categorize components [Kai96] (see Table 9.5). 

- Scope 
Specification components capture the characteristics of problems, e.g., ob­
ject models, specifications and designs. Source code or executable code 
constitutes implementation components, e.g., functions, classes, programs. 

- Purpose 
Components with domain purpose capture problems in application do­
mains. Components that are not specific to an application domain but 

Table 9.5. Kain's component categories and values 

Category Values 

Scope specification implementation 

Purpose domain technology 

Granularity fine coarse 

Abstraction general specific 



www.manaraa.com

124 9. Component Taxonomy 

focus on technical aspects of a software system are said to have technology 
purpose, e.g., components for database access or the user interface. 

- Granularity 
Fine-grained components are small and have limited capability, e.g., a func­
tion or class. Coarse grained components are more complex and provide 
extensive capabilities, e.g., subsystems or full-fledged applications. 

- Abstraction 
Components are considered to be general if they apply to at least two dif­
ferent applications. Specific components are limited to a particular problem 
that is specific to an application. 

The combination of the two values for each of the four categories yields 16 
different component categories (see Fig. 9.3). 

Similarly, McGregor et al. use components' level of granularity and scope 
of responsibility for distinction. They identify architecture-level components, 
design-level components and code-level components [MDK96]. Architecture­
level components correspond to independent units like subsystems. Design­
level components are represented by design patterns. Finally, code-level com­
ponents are either single classes or clusters of tightly coupled classes. 

Comparison. Kain uses scope, purpose, granularity and abstraction as char­
acteristics for component classification. We reflect these general categories 
only partly. 

Granularity is represented by the different composition categories. Fine­
grained components are those using textual, functional, modular, and object­
oriented composition. Coarse-grained components correspond to components 
with subsystem composition, object models, and open platform composition. 

Scope, purpose and abstraction can be used in addition in order to further 
characterize the functionality of components. 

9.2.3 Active and Passive Components 

Dusink and van Katwijk propose two types of components, active and pas­
sive [DvK87]. Functions in libraries are considered passive components to be 
used as building blocks in a system. Executable programs are active compo­
nents that require some kind of interprocess communication for composition. 
The different levels of abstraction reflect the historic evolution of abstraction 
mechanisms provided by programming languages. 

- Active components 
Active components run on their own. The environment, e.g., the operating 



www.manaraa.com

9.2 Related Work 125 

Fig. 9.3. Kain's component category combination 



www.manaraa.com

126 9. Component Taxonomy 

Fig. 9.4. Active and passive components 

system, has to provide means of interoperation between the components. 
Often such components can be used as complete programs by themselves 
or as part of a software system. For many operating systems large catalogs 
of such components exist. For example, many active components plus a 
simple mechanism to combine them exist for the operating system Unix 
(pipes and filters) . 

- Passive components 
Passive components are'included in a software system, e.g., by linking 
them to the system or by simply including their source code. The higher 
the abstraction level, the more gains in productivity can be expected when 
reusing passive components. They exist in the form of source code or exe­
cutable code and are the typical unit of today's software composition and 
reuse. Typical passive components are functions, modules and classes. 

Additionally, based on paradigms for design and use, two classes of pas­
sive components are distinguished, i.e., user-selectable components and tool­
selectable components. Tool-selectable components are supported by meta­
tools like 4th generation tools or prototyping tools. User-selectable compo­
nents are typical source code components available in libraries. 

User-selectable components are further divided into library components, 
secondary components and generic components (see Fig. 9.4). Library com­
ponents are Ada packages. Secondary components are packages that cannot 
be used stand-alone but require another (i.e., parent) component. Generic 
components are parameterizable packages. 

Comparison. The classification by Dusink and van Katwijk is rudimentary, 
but explicitly considers non-source-code components, even though it was de­
fined in the context of the Ada programming language. 

Active components correspond to components which have an operating 
system or a programming system as their platform. They may have user 
and data interfaces as possible forms of reuse. On the programming interface 
side, active components are assigned to specific or open platform composition 
(levels 7 and 8). 

Passive components are source code components (programming language 
or library platform) with their composition ranging from textual to subsys-



www.manaraa.com

9.2 Related Work 127 

Fig. 9.5. Wegner's taxonomy of software components 

tern composition. In fact, as Ada packages are primarily considered, modular 
composition is the appropriate category. 

Library components correspond to components based on a programming 
language platform. Secondary components, i.e., components requiring other 
packages, fall into the category library platform. 

9.2.4 State, Inheritance, Concurrency and Distribution 

Even though published already in 1984, Wegner provides a general classifi­
cation of software components of different languages [Weg89]. He uses state, 
inheritance, concurrency and distribution as discriminating characteristics. 
This results in the following components: functions and subprograms, pack­
ages and modules, classes with single inheritance, classes with multiple in­
heritance, concurrent tasks with shared memory, distributed concurrent pro­
cesses, and distributed sequential processes (see Fig. 9.5). 

Wegner states that this taxonomy is tentative, with the technology of 
software components being in a state of transition. For example, he writes 
that process abstraction may become the central abstraction mechanism, with 
data and function abstraction becoming a specialized form thereof. 

Wegner's taxonomy was primarily motivated by classifying programming 
languages, i.e., components provided by these languages. The other tax­
onomies we have presented were motivated by classifying components pro­
vided by a certain programming language like Ada. In contrast to these tax­
onomies, Wegner provides a general approach which is more useful for a 



www.manaraa.com

128 9. Component Taxonomy 

classification of reusable components that may be implemented in any pro­
gramming language and paradigm. 

Comparison. Wegner uses the characteristics state, inheritance, concur­
rency and distribution to classify components. His functions and subroutines 
correspond to components with functional composition. Wegner distinguishes 
between single and multiple inheritance. We do not make this distinction 
and simply have one category for components with object-oriented compo­
sition. We consider concurrency and distribution as component or platform 
attributes that might or might not be provided. For component reuse this is 
not (and should not be) of importance. 

9.3 Summary 

We have proposed a component taxonomy that is primarily based on reuse 
considerations. Aspects used for the classification are interfaces, forms of 
composition and platforms. 

The reuse taxonomy classifies components based on whether components 
can, in general, be put together. Only if composition and reuse is possible in 
general, do more detailed aspects of a component have to be determined, like 
its functionality, its quality, its reuse status, etc. 

We have also presented component taxonomies that were created in dif­
ferent contexts and with different motivations. None of them meets the need 
to classify arbitrary components that may be candidates for reuse. Many 
taxonomies concentrate on source code and do not take higher levels of ab­
stractions into consideration. 

The component categories defined in this chapter are used in Chapter 10 
to classify sample components that exhibit a high degree of reuse. 



www.manaraa.com

10. Component Examples 

Contents 

10.1 VisualBasic: Reuse of Visual Controls ............... 129 
10.2 Java: Reuse on the World-Wide Web ................ 131 
10.3 Unix Filters: Reuse based on ASCII Pipes ........... 133 
10.4 FrameMaker: Reuse of an Application ............... 135 
10.5 Field: Reuse in a Programming Environment ........ 136 
10.6 Summary ............................................ 138 

There have been several successful attempts in increasing the reusability of 
software components. All of these approaches are applicable only in certain 
contexts and do not provide general solutions to software engineering prob­
lems, but they demonstrate that productivity can be increased considerably 
when special attention is paid to software composition. 

In this chapter we discuss two component examples of programming lan­
guages and three examples of application components. VisualBasic and Java 
are described in Sections 10.1 and 10.2, respectively. Unix filters, Frame­
Maker, and Field are discussed in Sections 10.3, 10.4, and 10.5, respectively. 
We have chosen these examples for discussion for the following reasons: 

- VisualBasic is often referred to as the success story of software reuse. 
- Java enjoys increasing popularity as the Web language. 
- Unix filters represent a simple but successful reuse story. 
- FrameMaker provides an example of a reusable application with a complex 

graphical user interface. 
- Field is an example of reuse in an integrated programming environment. 

In Section 10.6 we rate the example components according to the taxonomy 
we introduced in Chapter 9. 

10.1 VisualBasic: Reuse of Visual Controls 

In the past years visual programming has attracted widespread attention by 
promising to make programming much easier. Visual programming comprises 
areas like visual programming, program visualization, and programming by 



www.manaraa.com

130 10. Component Examples 

example [Mye86] (the term 'visual programming' is used here with two dif­
ferent meanings). Although mechanisms for program visualization and pro­
gramming by example can supply helpful support for software reuse purposes, 
they do not provide additional abstractions for software components and their 
compositions. Yet some visual programming environments have emerged that 
seem to cast a new light on software reuse. In this context it is not important 
whether a system is "really visual" . Instead, we are interested in the concepts 
that are provided in modeling and combining (reusable) components. 

Microsoft VisualBasic is a popular visual programming language [Mic93a, 
Mic93b]. It provides programmers with a quick and easy method of develop­
ing applications. An integrated environment with various tools can be used 
to quickly create graphical user interfaces and to use event-driven program­
ming techniques. The integrated development environment has sophisticated 
editing and debugging tools which allow attaching code to the interface and 
writing code to respond to specific events which occur as a result of user in­
put. The fact that all components react on events makes it easy to arbitrarily 
combine them and to select among a large number of existing components. 
There are three main steps to creating a VisualBasic application: 

1. Create the user interface. 
2. Set properties. 
3. Write code. 

The user interface is made of controls, forms and other objects. Controls are 
used to click buttons to perform actions, to display and enter text, to present 
choices to the user, etc. VisualBasic programs are event-driven. Forms and 
controls recognize events and respond by executing event procedures. Events 
are caused by the user (e.g., keystroke or mouse click) or by other forms or 
controls [Mic93c]. A VisualBasic application consists of: 

- form modules (containing visual elements of a form, including controls and 
basic code associated with forms), 

- code modules (containing Basic code), and 
- custom controls. 

Code and form modules can contain declarations, event procedures and gen­
eral procedures (i.e., procedures not directly associated with an event). 

Custom controls are Windows DLL files and highly dependent on Visual­
Basic. Custom controls are designed and implemented with control classes. 
A control class is composed of a control model (property information table, 
event information table) and a control procedure (e.g., determines when an 
event is recognized, handles the painting ofthe control). Custom controls can 
also (with little or no modification) be used in the Visual C++ environment. 
Control classes can be subclassed. 

Evaluation. VisualBasic components are clearly based on a programming 
system; i.e., VisualBasic is the platform. On whatever machine this system is 



www.manaraa.com

10.2 Java: Reuse on the World-Wide Web 131 

offered, the components can be reused. Composition with different platforms 
is possible, as long as it is supported by the VisualBasic platform, e.g., with 
Visual C++ and with OLE. 

VisualBasic components can have a graphical user interface and data in­
terfaces, but these interfaces are not used for composition purposes. The 
platform provides an event handling mechanism, which makes it easy to add 
components to a system and to remove them. Due to the extension features 
and the event handling, VisualBasic's composition features can be assigned 
somewhere in between object-oriented composition and subsystem composi­
tion. OLE access provides the possibility for integration with object models. 

Despite their usefulness and contribution to increased software productiv­
ity and reuse, components of visual programming systems share one common 
handicap. They need their specific support environment and cannot easily be 
combined across different systems. 

10.2 Java: Reuse on the World-Wide Web 

Java is an object-oriented programming language with interesting features for 
software reuse [GM95]. Java's designers addressed many problems of today's 
software developers. For example, many hardware architectures with different 
operating systems and incompatible graphical user interfaces make it difficult 
to develop software running on all these platforms. Additionally, applications 
are increasingly required to run in distributed client/server environments. 
Programming languages like C and C++ can be used to cope with such 
situations, but they also provide many pitfalls that require experienced and 
disciplined engineers willing to put much extra work into achieving these 
goals. 

Java was developed at Sun Microsystems as a portable, interpreted, high 
performance and simple object-oriented programming language. A character­
ization of the language is given by the goals that were set for Java's develop­
ment [GM95]: 

- Simplicity and familiarity 
When switching to a new programming language necessitates extensive pro­
grammer training, this can keep the language from being quickly adopted 
on a broad basis. Java is both syntactically and semantically similar to 
C and C++, which, considering the hordes of programmers using C and 
C++, should positively influence its wide acceptance. 

- Object-orientedness 
There is no doubt any more that object-oriented programming has many 
benefits and is more than just another way of organizing the source code. 
Object-orientedness is a must for any modern programming language. 



www.manaraa.com

132 10. Component Examples 

- Robustness and reliability 
Considering the fact that our software systems are growing larger and 
larger, building reliable software is a key problem. The majority of today's 
systems are built with inappropriate tools like C and C++ that offer an 
enormous variety of unchecked, potential errors. Eliminating many of these 
features and adding both extensive compile-time and run-time checking 
has made Java suitable for building highly robust and reliable software. 
Automatic garbage collection is one improvement over C++. 

- Security 
Security is of utmost importance in distributed environments. Java pro­
vides checks for recognizing dangerous code, thus avoiding dangers by 
viruses and other intruders. 

- Portability 
In order to support portability over many platforms, a virtual machine 
has been defined. An interpreter is used to execute Java code on this ma­
chine. This slows down performance but guarantees the same semantics on 
all platforms. This contrasts to the portability of C and C++, for which 
many features are defined as machine dependent. Additionally, standard 
class libraries, including a window toolkit, are defined and available on all 
supported platforms. 

- High performance 
In order to compete with the performance of compiled languages without 
giving up portability, code fragments of a Java program can be compiled 
on the fly, i.e., at run-time. It is also possible to rewrite certain parts in 
machine code and interface them to the Java system. 

- Heterogeneity and distributed networks 
Multiple threads, as lightweight processes are called in Java, together with 
synchronization mechanisms are supported directly in the language. 

- Architecture neutrality 
Java code can be interpreted on any machine to which the interpreter and 
run-time system have been ported. 

- Dynamic adaptability 
Despite its strict static checking at compile-time, Java programs can be 
extended and adapted by dynamically loading and linking classes on de­
mand. 

A World-Wide-Web browser was among the first applications to be imple­
mented with the Java language. Besides the features listed above, the most 
compelling characteristics of this browser are mini-applications, called ap­
plets, that are shared across the net (local or wide-area) and executed locally. 

The HotJava browser provides a good example of how Java applications 
can be dynamically configured and adapted even over the Internet and at the 



www.manaraa.com

10.3 Unix Filters: Reuse based on ASCII Pipes 133 

user's discretion. HotJava can be extended dynamically and adapted to sup­
port new protocols by adding the appropriate components. This can be done 
even over the Internet in a transparent way (see Fig. 7.3 on page 96). Thus 
software components can be reused world-wide and incorporated in one's own 
system automatically. This mechanism cannot cross language boundaries, but 
it is independent of any constraints from hardware architectures, operating 
systems and/or graphical user interfaces. 

An enhancement to the Java platform is JavaBeans, a component archi­
tecture for Java [Sun96}. This platform allows more dynamic interaction and 
the definition of more independent components. 

Evaluation. At first sight, there seem to be no major differences between 
Java and other object-oriented languages like C++. We have object-oriented 
composition and Java as platform. However, the platform might make the 
difference. The platform includes not only the language but also extensive 
libraries with support for graphical user interfaces. This guarantees portabil­
ity of components among many computer systems. In addition, the platform 
offers not only source code, but also object code compatibility and some sort 
of security. 

The ability to download applets from the net and to extend the function­
ality of a running browser adds a new dimension to software reuse. Currently 
the main application of this feature is to control the display of (animated) 
data in Web pages. Additional functionality and a new kind of Internet soft­
ware may come into existence. Whether this is an important contribution to 
traditional software engineering is not clear yet. However, continued exten­
sion and modification of software is important to comply to ever changing 
requirements. 

The (commercial) success of Java remains to be seen. In case it continues 
its increasing popularity it will provide a better platform for software reuse 
than languages like C++. 

10.3 Unix Filters: Reuse based on ASCII Pipes 

In the well-known pipe and filter approach each component reads input data 
and produces output data, usually by applying local transformations to the 
input stream. These local transformations are done incrementally; i.e., output 
is generated before the whole input is consumed, thus the term filter. To make 
filters highly interchangeable, they do not share states with each other and 
do not know the identity of other filters (their input generators and their 
output consumers). Common specializations of pipes are [GS94]: 

- Pipelines 
are linear sequences of filters. 

- Bounded pipes 
have the amount of data restricted. 



www.manaraa.com

134 10. Component Examples 

input ..... I __ fil_te_r_....J1 pipe - .... I __ fi_lte_r_..J pipe ..... 1 __ fil_te_r_....J1 output _ 

Fig. 10.1. Unix pipes and filters 

- Typed pipes 
have a type defined for their data. 

In Unix shells these components can be arbitrary programs as long as they 
read streams of input data and produce streams of output data. Filters are 
integrated by piping the output from one component into the input of an­
other component (see Fig. 10.1). Filters can easily be combined, added and 
replaced when they agree on the same form of data transmission, e.g., text 
files. However, pipe and filter systems lead to batch processing and cannot 
(easily) be integrated with interactive applications. A lowest common denom­
inator on data transmission (e.g., ASCII files) requires each filter to parse and 
unparse data leading to added complexity in the filters and a loss of perfor­
mance [GS94]. 

Unix provides many components that can serve as filters. Consider the 
following example, where three components are used in order to determine 
how often the word 'filter' is used in a set of files: 

more *.tex I grep filter I we -1 

First, the component more inputs and outputs the contents of all files that 
end with the extension . tex. This output is used by the second component, 
grep, which outputs all lines containing the word 'filter'. This output is used 
by the component wc, which counts lines. The' I ' is used to pipe the output 
of one component to the input of another component. The output of the last 
component could be directed to a file. In the example there is no output file 
specified for the last filter; thus the result is simply output on the console. 

Simply typing the above example at the prompt of a Unix shell would 
mean to 'use' these components, rather than to 'reuse' them. However, it is 
possible to create new components by reusing existing ones (e.g., using shell 
scripts). 

Evaluation. Components are complete programs (filters) that are purely 
computational and do local processing and data stream to data stream map­
ping [Sha95]. Filters do not communicate with each other. They simply read 
input and write output. Reuse is accomplished by means of a textual data 
interface, rather than a program (or user) interface. 

Filters are executable programs. They can be implemented in any pro­
gramming language and paradigm. A set of filters to be used together has to 
share the same execution platform (e.g., Unix). This platform has to provide 
a mechanism (pipes) for the interconnection of the output of one filter to the 
input of the next filter. 



www.manaraa.com

10.4 FrameMaker: Reuse of an Application 135 

Filters do not have a user interface, but parameters can be specified on 
invocation. In the example above, the components more, grep and we are 
invoked with parameters. For example, the option -1 for we specifies that 
only lines should be counted rather than characters and words also. 

Unix filters are often implemented as shell scripts and not self-contained 
when they invoke other components by name. Thus they may behave differ­
ently under different environments, as their 'subcomponents' may be differ­
ent. 

IDA FrameMaker: Reuse of a Desktop Publishing 
Application 

FrameMaker is a complex commercial application for publishing. It contains 
a word processor with spell checking, hypertext links, cross-references, a page 
designer, a graphics editor, a book builder, and much more [Fra95bJ. Frame­
Maker is available on many platforms (operating systems), e.g., Unix, Apple 
Macintosh and Microsoft Windows. The document format is the same on all 
of these platforms. 

FrameMaker appears as a monolithic application with a complex graphical 
user interface and complex functionality. However, reuse is possible by means 
of an application programming interface (Frame API) and a development 
environment (FDE). 

With the API it is possible to write C programs to control FrameMaker, 
communicate with the user, add functionality, modify the user interface (e.g., 
menus), and do anything a user can do. Programs using the API (called 
clients in FrameMaker terminology) can add various types of functionality 
to FrameMaker, e.g., grammar checkers, reporting utilities, version control 
systems, filters for file exchange with other applications [Fra95aJ. 

The development environment supports the development of platform­
independent clients. It provides platform-independent support for input/ 
output, string handling, memory allocation, etc. It provides the (software) 
platform to guarantee portability of FrameMaker clients to all platforms sup­
ported by Adobe. 

Fig. 10.2 depicts the general structure of FrameMaker and its clients. 
More than one client can be used simultaneously. FrameMaker starts the 
clients as separate processes and communicates via the C library. Clients 
perform simple function calls and do not have to worry about interprocess 
communication. 

Evaluation. FrameMaker is a complex component. Its reuse is possible by 
means of a functional application programming interface. Naturally, reuse 
is limited to the platforms supported by FrameMaker. Even though inter­
process communication is used between FrameMaker and its clients, com­
position is solely functional. For the reuser, i.e., the programmer writing a 



www.manaraa.com

136 10. Component Examples 

FrameMaker 
client 
API 

Fig. 10.2. FrameMaker with 
clients 

FrameMaker client, it does not matter whether the client is called beyond 
process boundaries or, for example, linked dynamically. Interoperation be­
tween FrameMaker and its clients is static; i.e., specific functions are called 
and specific data is used. 

The FrameMaker Development Environment (FDE) provides C interfaces 
as application programming interface (API) to access FrameMaker. Frame­
Maker clients can be programmed in any language as long as the language 
provides access to C functions. Clients can be implemented, for example, in 
C++. 

10.5 Field: Reuse in a Programming Environment 

Field is an integrated programming environment on Unix platforms by 
Reiss [Rei95a). Its development started in the mid 1980s at Brown Univer­
sity. A major criterion in developing the environment was simplicity and the 
provision of a base for existing tools. The integration of existing tools is im­
portant for programming environments because programmers want to stick 
to their favorite editor. But it is also important to integrate existing compil­
ers, debuggers, configuration management tools, etc. Otherwise it is almost 
impossible to support various programming languages. Moreover, especially 
from our viewpoint of reuse, it does not make sense to reimplement all these 
existing tools only for the sake of having them integrated in the environment. 

Integrating and reusing existing tools was not the only goal in the de­
velopment of Field, however. The production of a friendly, easy-to-use (for 
students) environment that also provides a showcase for programming envi­
ronment research was another goal. 

A message server forms the nucleus of the Field environment. This server 
supports a broadcasting mechanism for messages containing commands or 
pieces of information. Tools register with the server and send messages which 
are then broadcast to other tools. In order to reduce the amount of message 
traffic, the broadcasting mechanism is selective. Thus tools not only register 
with the server but also notify the server of messages they are interested 
in and of command requests other tools can make from them. If the server 
receives a message, it will broadcast it only to those tools that have explicitly 
expressed interest in getting such a message. 



www.manaraa.com

10.5 Field: Reuse in a Programming Environment 137 

~ res 

<· .. 1 
make 

....... 1 gnumakel 

message 
server 

.... 1 
c 

scanner 

,--I c++ 
scanner 

~ Pascal 
scanner 

Fig. 10.3. Architecture of the Field environment 

Existing tools are not aware of the message server and will not communi­
cate with it. In order to reuse such tools the environment has to provide tools 
that send and receive messages and also communicate with the tools to be 
reused. These mediator tools are called wrappers and have to map messages 
from and to commands of the tool they wrap. An alternative way of integrat­
ing existing tools into a message-based environment is to augment them with 
the code that is necessary to communicate with the message server. This is 
white-box reuse, as the tools to be reused have to be modified, i.e., extended. 
The source code has to be available in order to apply this integration mech­
anism. Using wrappers corresponds to black-box reuse and is less susceptible 
to changes in new versions of tools. In Field tools from the underlying Unix 
environment are wrapped by creating subprocesses that run using pipes or 
pseudo ttys. 

Fig. 10.3 shows the general architecture of Field, presenting only a few 
of the components available. The message server plays the central role in 
this architecture and communicates with tools that have been specifically 
developed for this purpose. These tools deal with outside communication 
to tools that do not have an integrated message mechanism. Programming 
environments with similar tool integration include Fuse from DEC, SoftBench 
from Hewlett-Packard, SparcWorks from Sun Microsystems, and Sniff from 
TakeFive (see also [Rei95a]). 

Evaluation. The reuse approach demonstrated in integrated programming 
environments can be regarded as quite successful. The user is provided with 
a uniform user interface and can handle different task with different tools . 
However, integrated environments do not solve reuse problems on a broader 
basis. Only certain kinds of components can be included, i.e., reused. It is not 
possible to take arbitrary components, e.g., a class browser from a different 
vendor, and include it in one's favorite environment . Integration work remains 
to be done. Components to be reused have to be either modified or endowed 
with a wrapper. 



www.manaraa.com

138 10. Component Examples 

Table 10.1. Components of examples 

Visual-
Java Unix Frame-

Field Basic filters Maker 

Com-
Visual 

Java Program-
po-

controls 
classes, Unix filters API clients ming 

nents applets tools 

10.6 Summary 

In this chapter we have discussed five different examples for component reuse, 
i.e., VisualBasic, Java, Unix filters, the application FrameMaker and the Field 
programming environment. Below we briefly summarize the reuse aspects of 
these examples. 

Components. The components of the examples are summarized in Ta­
ble 10.1. VisualBasic offers visual elements that are used to form part of 
the user interface and to generate and react to various kinds of events. For 
Java we distinguish between classes used to write the source code of programs 
and applets, which are used as dynamic extensions to Internet browsers. Unix 
filters provide high flexibility in terms of components. Any executable pro­
gram can serve as filter as long as it reads from standard input, writes to 
standard output, and does not require any other interaction with the user. 
FrameMaker interacts with API clients that have to be created by means 
of the provided functional interface. Components of the Field programming 
environment are tools that communicate with the message server. Various 
composition techniques can be exploited to enable the reuse of existing tools 
that are not endowed with the necessary communication skills. Wrapping 
tools with command-line user interfaces or filters are examples of that activ­
ity. 

Composition. Table 10.2 summarizes the classification for component com­
position. Unix filters are most peculiar among the example components, as 
they use solely a data interface for composition and interoperation. The other 
components use functional and object-oriented programming interfaces. 

Components of VisualBasic, Java, FrameMaker, and Field may also use 
a data interface for interoperation, but typically this is not the case. Unix 
filters must not have a user interface, but they may provide the option to 
specify arguments when invoking a filter. VisualBasic components often con­
tain/specify part of the user interface, e.g., a button or dialog. FrameMaker 
clients typically enhance the user interface of FrameMaker, but may also use 
some separate means of user interaction. The composition between Frame­
Maker and its clients is done solely by means of the programming interface. 

Attributes. Table 10.3 summarizes attributes of the example components. 
The functionality of Unix filters is limited to textual transformations, and 



www.manaraa.com

10.6 Summary 139 

Table 10.2. Interfaces and platforms of example components 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Visual-
Java Unix Frame-

Basic filters Maker 

Program-
object- object- functional ming -

interface oriented oriented (1) 

User _ (2) _ (3) 
interface 

- -

Data - textual interface 
- -

Platform Visual- Java Unix Frame-
Basic Maker (6) 

FrameMaker provides a functional C interface. 
Parameters can be specified on invocation of a filter. 

Field 

functional 

any (4) 

_ (5) 

Unix 

FrameMaker does have a graphical user interface, but it is not used for 
reuse purposes. 
Most Field tools have graphical user interfaces which are not used for 
reuse purposes. However, some (legacy) 'background' tools are wrapped 
by means of pseudo ttys. 
Tools may use data interfaces for individual interoperation. 
This includes any platform where FrameMaker is available and what­
ever provides possible composition with C functions, e.g., C++. 

there is no component interaction. VisualBasic components interact by means 
of events. Java classes have method invocation with dynamic binding. Frame­
Maker clients are limited to a functional programming interface. Tools in the 
Field programming environment use a selective message broadcast. 

User interaction is possible for any components except for Unix filters. 
Features for quality control are not available, except simple compiler checks 
like type compatibility. An example of additional quality control are Eiffel's 
preconditions and postconditions. 

Java and VisualBasic components can be adapted by means of inheritance. 
Unix filters can be wrapped; i.e., before and after a filter's transformation 
some additional transformations can be performed. FrameMaker clients and 
Field tools may have various differing forms of adaptation. 

Distribution is a matter of fact for FrameMaker clients and Field tools. 
Unix filters can be executed on separate processes, but the pipe mechanism 
requires serial execution on a single process. VisualBasic and Java compo­
nents are typically not distributed, but provide the possibility. Java applets 



www.manaraa.com

140 10. Component Examples 

Table 10.3. Attributes of example components 

Visual-
Java Unix Frame-

Basic Filters Maker 

Function- any text 

ality 
any any transfor- any (1) 

mation 

Component event- dynamic - via API interaction based binding 

User usually possible no possible 
interaction yes (3) 

Quality - security - -
control (5) 

Form of inherit- inherit- wrapping arbitrary 
adaptation ance ance (6) 

Concur- no no no no rency 

Distribu- yes/no yes/no no yes 
tion 

typically in the context of desktop publishing 
typically in the context of programming environments 
User interaction is typically done through FrameMaker itself. 
Tools may have separate user interaction. 
Security features are provided for applets. 

Field 

any (2) 

via 
message 
server 

possible 
(4) 

-

arbitrary 
(7) 

no 

yes 

(1) 

(2) 

(3) 

( 4) 

(5) 

(6) FrameMaker clients can be implemented in any programming language 
that is compatible to C. 

(7) Tools can be implemented in any programming language and/or 
paradigm. 

are distributed over the Internet. Upon their invocation, however, they are 
copied over the net and executed on the local machine. 



www.manaraa.com

Part III 

Software Engineering 



www.manaraa.com

11. Software Engineering 

Contents 
11.1 Software Management ............................... 143 
11.2 Software Specification ............................... 145 
11.3 Software Design ..................................... 145 
11.4 Software Implementation ............................ 146 
11.5 Software Testing ..................................... 147 
11.6 Software Maintenance ............................... 148 
11.7 Summary ............................................ 149 

Cost-effective production of high-quality software systems is the primary goal 
of software engineering. Quality in this respect comprises attributes like reli­
ability, robustness, user-friendliness, efficiency and maintainability. Software 
reuse and software components provide crucial contributions in this direction; 
this is the topic of Part III. 

In this chapter we give an overview of classic software engineering. Large 
software projects are broken up into various project phases. In the following 
sections we describe these. Various divisions of the phases are possible de­
pending on project size, project kind, etc. We describe software management 
in general in Section 11.1 and the phases specification in Section 11.2, design 
in Section 11.3, implementation in Section 11.4, testing in Section 11.5 and 
maintenance in Section 11.6. A summary follows in Section 11.7. 

11.1 Software Management 

Software projects tend to run over budget and behind schedule. Reasons for 
this are that projects are often distinct from previous projects, that software 
process models are only simplifications of the real software process, and that 
software is intangible. Software management has to plan a project, establish 
objectives, consider alternative solutions, identify constraints, and select and 
evaluate personnel. It comprises the following major activities (see Press­
man [Pre92) and Sommerville [Som92)): 

- Project planning 
The progress of a project must be thoroughly planned. Planning is an in­
teractive process. The initial plan will not be static but will have to be 



www.manaraa.com

144 11. Software Engineering 

modified with advancing time. It is important to anticipate problems, to 
prepare different solutions (risk analysis), to establish milestones, etc. Var­
ious plans may be necessary for effective management, e.g., development 
plan, validation plan, testing plan, staff training plan, configuration man­
agement plan, etc. 

- Project measuring 
Despite the intangible nature of software, many measurements can be done 
in software projects. Software measures can focus on technical, productivity 
and quality aspects. They are used to indicate software quality, to assess 
staff productivity, to assess tool, training and methodology benefits, and 
to provide data for cost estimation. 

- Project estimating 
Cost and effort estimations are necessary to predict profit or loss of a 
project. Systematic steps can be taken to provide estimates with acceptable 
deviations. Different techniques for cost estimation have been proposed, 
e.g., algorithmic cost modeling, expert judgement, estimation by analogy, 
top-down/bottom-up estimation. Different techniques should be used and 
their results compared. A well-known and well-documented cost estimation 
model is Boehm's CoCoMo (Constructive Cost Model) [Boe81, Boe96]. A 
project must be estimated continually in order to stay within budget/time 
and to detect cost overruns or delays as soon as possible. 

- Project scheduling 
Software project scheduling involves identifying project tasks, establishing 
interdependencies among these tasks, assigning resources to tasks, and de­
veloping a time-line schedule. Some of the tasks are usually carried out in 
parallel. Coordination of these tasks and optimization of work force is es­
sential for project scheduling. Task dependencies and staff allocations are 
typical outputs of project scheduling. 

- Project controlling 
Project plans and schedules are used to administer resources and to direct 
staff members. Keeping track of and controlling project progress requires 
various activities, e.g., comparing actual and planned dates for tasks, con­
ducting periodic meetings for status or problem reports, determining the 
accomplishment of milestones, etc. 

All these activities depend on each other; e.g., cost estimation requires mea­
surements and controlling is impossible without planning and scheduling. 
Software reuse influences software management, for example, measurement 
issues (see Section 4.4 on page 48) and organizational models (see Section 4.3 
on page 40). 



www.manaraa.com

11.2 Software Specification 145 

11.2 Software Specification 

Software specifications serve as contracts between customers and manufac­
turers of software systems. (Likewise, specifications of components serve as 
contracts between component manufacturers and component reusers.) 

For complex systems or components, requirements analysis may be neces­
sary. This involves steps like problem analysis, document analysis, data anal­
ysis, weak-point analysis, feasibility study, etc. [Pom84]. Software components 
are typically less complex and do not always require all these activities. 

A software specification should specify the external behavior of a com­
ponent, specify constraints on the implementation, be easy to change, serve 
as a reference tool for maintenance, and characterize acceptable responses 
to undesired events [Som92]. Functional and nonfunctional requirements are 
among the most important parts of a specification. Other parts include user 
interfaces, error behavior, acceptance criteria, system environments, etc. 

- Functional requirements 
services that are expected by reusers of a component 

- Nonfunctional requirements 
constraints under which a component has to operate 

Specifications should completely and consistently define the requirements on 
components. A component's specification not only serves as a contract be­
tween component developer and reuser but also as a valuable source of in­
formation for evaluating a component's reuse value in a certain context (also 
see Section 17.2.4 on page 208). 

11.3 Software Design 

After software requirements have been analyzed and specified, a design has 
to be made. Software design is an iterative process and involves describing 
a component at different levels of abstraction. Design is a creative process 
and requires experience, which can be gained by the studying good designs. 
This makes well documented, good designs valuable. Design includes various 
activities: 

- Architectural design defines subcomponents and their interrelations. 

- Component or interface design defines components' interfaces in detail. 

- Data structure design defines data structures that are used for the imple-
mentation. 

- Algorithmic design defines the algorithmic decomposition of components. 



www.manaraa.com

146 11. Software Engineering 

Top-down design is typical for components being built from scratch. Tasks 
are decomposed into subtasks until these can easily be formulated as algo­
rithms. Bottom-up design proceeds in the opposite direction. Fundamental 
components are defined first and used to realize the next level of abstraction. 
Each level comprises what is called an abstract machine. Bottom-up design 
is essential for the reuse of existing components. 

Good design is crucial for the quality of a software component. There is 
no exact definition of what a good design is, but good designs are considered 
to have the following characteristics [Pre92, Som92]: 

- Modularity 
A component should be logically partitioned into subcomponents that per­
form specific functions. 

- Coupling 
Loosely coupled components are as independent of other components as 
possible. For example, they do not have a shared state and do not inter­
change control information with other components. 

- Cohesion 
Cohesive components represent single entities including all operations on 
these entities. 

- Understandability, adaptability 
To make components understandable and adaptable, they should be loosely 
coupled and well documented. 

All these characteristics are related to each other. For example, loose coupling 
supports both understandability and adaptability. 

Various categories of design methods exist, for example, function-oriented 
(like stepwise refinement), data-oriented (like Jackson Structured Program­
ming) and object-oriented design methods (as proposed by Booch and Rum­
baugh). 

Design methods and software reuse interact in two ways [BR92]. First, a 
design method mayor may not encourage designers to consider the reuse of 
existing components (design with reuse or application engineering). Second, 
the products of a design method (anything from design documents to source 
code) will turn out to be more or less reusable (design for reuse or component 
engineering). We cover this in more detail in Chapters 14 and 15. 

11.4 Software Implementation 

Implementation is the process of transforming a design into an executable 
form. For software systems this typically means coding in a certain program­
ming language. According to our definition, software components can have a 



www.manaraa.com

11.5 Software Testing 147 

variety of forms. They can be implemented in a programming language or be 
composed of components of any kind. 

Ideally, the design of a component is independent of its implementation. 
In practice, however, this is often impossible. As shown in subsequent chap­
ters, we have to consider reusable components already during the design. 
Depending on what kind of components we consider, we make assumptions 
about the implementation of the component under development. 

We refrain from dealing with implementation in greater detail. This typ­
ically comprises subjects like choice of programming language, choice of 
names, programming style, comments, portability considerations, etc. These 
issues lose importance for systems being composed of components. They have 
to be considered, however, in order to implement a component in a certain 
programming language. 

11.5 Software Testing 

The purpose of testing is to ascertain whether a component satisfies its re­
quirements by discovering as many errors as possible. Tests can be applied to 
different aspects of components. Various kinds of tests include the following: 

- Specification test 
Specification tests check for the completeness, clarity, consistency and fea­
sibility of a component specification. This should be done together with 
potential component reusers. 

- Component test 
Component tests reveal discrepancies between a component's specification 
and its implementation. 

- Integration test 
Composing tested components can reveal new kinds of errors that stem 
from the interaction of components. Integration tests are applied to sub­
systems or components being composed of lower-level components. 

- Acceptance test 
The development of software products ends with an acceptance test where 
real operating conditions are used. This may not be possible for software 
components where potential reuse candidates might not even be known at 
the time. 

Various testing methods and strategies include: 

- Static/dynamic testing 
Static testing involves activities to find errors via static and semantic anal­
yses. For dynamic tests components have to be executed or simulated. 



www.manaraa.com

148 11. Software Engineering 

- Black-box/white-box testing 
Black-box tests involve input/output relationships of components. White­
box tests consider the inner structures of components as well. 

- Top-down/bottom-up testing 
In top-down testing the main components are tested first by using stubs 
for components that are not yet available. In bottom-up testing basic com­
ponents are tested first, followed by higher-level components that rely on 
lower-level components. , 

Debugging is closely related to testing. Testing means detecting errors; de­
bugging involves the activities of finding and removing errors. 

With software reuse, software quality can be increased and testing efforts 
can be decreased. A component developer will do any kinds of tests that 
seem appropriate to guarantee a component's quality. The component reuser 
should be able to trust a component's quality. Dynamic black-box tests are 
sufficient on the reuser's side. For composition of systems from components, 
bottom-up tests are suitable in most situations. 

11.6 Software Maintenance 

Software maintenance is the modification of a software component after its 
first delivery. Such modifications include error corrections, performance or 
other improvements, functionality extensions, or adaptations to changed en­
vironments. 

Software maintenance is by far more than just fixing bugs. Maintenance 
activities fall into the following categories: 

- Adaptive maintenance 
to make a software component usable in a changed environment, e.g., 
adapting a component to a new (version of an) operating system or appli­
cation framework 

- Corrective maintenance 
to overcome existing errors, i.e., diagnosing and correcting bugs 

- Perfective maintenance 
to improve performance, maintainability, or other software attributes, e.g., 
enhancements demanded by users 

- Preventive maintenance 
to prevent future maintenance activities, e.g., redesigning, recoding, and/ 
or retesting, sometimes complete re-engineering 

The cost of maintenance has been steadily increasing over the past decades. 
Most companies spend by far more than 50 percent of their software life 
cycle budget on maintenance. This causes a dramatic decrease in software 



www.manaraa.com

11.7 Summary 149 

productivity. Maintenance costs are related to both technical and nontechni­
cal factors. Technical factors include component dependencies, programming 
languages/paradigms, quality of documentation, etc. Dependencies on the 
external environment (e.g., taxation changes), system lifetime, and staff sta­
bility are examples of nontechnical factors influencing maintenance costs. 

Reuse can have a positive influence on maintenance costs when high­
quality components are available and reused for the development of software 
systems. 

11.7 Summary 

At the beginning of this chapter we mentioned that the cost-effective produc­
tion of high-quality software systems is the primary goal of software engineer­
ing. For more details the reader is referred to various software engineering 
books, e.g., by Blum [Blu92]' Pressman [Pre92), Sommerville [Som92) and 
Goldberg/Rubin [GR95). 

With the reuse of software components, the definition of software engi­
neering has to be slightly modified to be the cost-effective production of high­
quality software components and the composition of high-quality software 
systems. The terms software specification, software design, software imple­
mentation, software testing and software maintenance can simply be replaced 
by component specification, component design, component implementation, 
component testing and component maintenance. However, effective reuse re­
quires additional activities to compose systems and to extract commonalties 
of groups of common systems. This is discussed in Chapters 13, 14 and 15. 

Documentation is not covered in the chapters at this point. Like mainte­
nance, documentation is often seen as an appendage to the process of software 
development. However, the importance of documentation increases with the 
reuse of software and particularly with the reuse of software components. We 
take this into account by dedicating a whole part of this book to Software 
Documentation (Part IV). 



www.manaraa.com

12. Software Process Models 

Contents 

12.1 Waterfall Model ..................................... 151 
12.2 Exploratory Model .................................. 153 
12.3 Prototyping Model .................................. 155 
12.4 Spiral Model ........................................ 156 
12.5 Twin Life Cycle ..................................... 157 
12.6 Summary ............................................ 158 

In the previous chapter we described the most important steps for the creation 
of software. In order to define the order of these steps and to establish tran­
sition criteria to progress from one step to another, models for the software 
development process were derived from other engineering activities [Boe88]. 
The major advantage of software process models is their guidance regarding 
the order in which to fulfill certain tasks. 

In this chapter we discuss various software process models. The original 
model, known as the waterfall model and depicting the classic software life 
cycle, is described in Section 12.1. Modifications and enhancements made 
to this model follow in Sections 12.2 to 12.4. The twin life cycle, depicting 
the general idea of reuse, is described in Section 12.5. A summary follows in 
Section 12.6. 

12.1 Waterfall Model 

According to the waterfall model, the software development process is divided 
into well-defined phases (see Fig. 12.1). Each phase must be finished before 
the next one can start. After completion of static specifications, software de­
velopers must prepare a tailor-made design and a corresponding implementa­
tion. The better the implemented program fulfills the given requirements, the 
better was the work of the software developers. The waterfall model has been 
widely adopted because it can be clearly divided into various steps and docu­
ments can be defined as the result for each step. This enables management to 
inspect the development process and assess its progress. Every step is consid­
ered to be complete when the documents defined for this step are produced, 
reviewed and accepted. The waterfall life cycle comprises the following steps: 



www.manaraa.com

152 12. Software Process Models 

Fig. 12.1. Classic software life cycle (waterfall model) 

- Requirements analysis 
The purpose of this step is to identify and document the requirements 
to the software system. Interaction between customers and developers is 
necessary if the requirements are not clear. This step focuses on the end 
user and may already include the creation of user manuals. 

- Specification 
Once the requirements are clear, software developers write the exact spec­
ification of the software system. The specification focuses on the system 
itself, and all the user requirements have to be considered. The resulting 
document serves as the base for the subsequent development process. The 
final system will be said to be correct if it meets the specification. 

- Design 
The design of a software system usually comprises two stages, architectural 
or high-level design and detailed design. Architectural design establishes 
the overall structure of the design, e.g., module structure and class organi­
zation. The results of the architectural design are refined by outlining the 
structure of the modules and/or classes. 

- Implementation 
In this step the actual code of the software system is produced. 

- Test 
All parts of the software system have to be tested individually. After that , 
the parts are integrated and the system is tested as a whole. 



www.manaraa.com

12.2 Exploratory Model 153 

- Operation and maintenance 
After successful testing the system is delivered to the customers. Any mod­
ifications after delivery are part of the maintenance phase. 

Any step might uncover problems in a previous step and necessitate returning 
and partly or even completely redoing earlier work. In practice a step might 
start before the previous has been totally completed. Some activities of the 
software process are not depicted as separate steps because they span the 
entire life cycle. These activities encompass documentation, verification and 
management. 

The waterfall model enforces a linear process, which implies that exe­
cutable programs are available late in the process. Any misunderstandings 
between customers and developers remain hidden for a long time. Miscon­
ceptions are likely to occur because specifications, which are the contract 
between customer and developer, are written in a style customers are seldom 
familiar with. Another drawback is that any technical problems cannot be 
perceived before the test phase. Modifications become costly because they 
are so late. The classic software life cycle presupposes static requirements 
and does not deal with incomplete and inconsistent specifications. This ap­
proach contradicts reality, because experience has shown that programs need 
continuous modification and extension. 

Despite its drawbacks, the classic software life cycle continues to provide 
structure for many software projects. However, despite the weaknesses, it is 
better to develop software according to this life cycle than to use a haphazard 
approach. 

12.2 Exploratory Model 

The classic software life cycle is not practical for many of today's software 
systems. When requirements and environments are changing quickly, it be­
comes impossible to foresee all aspects of a system from the start. Exploratory 
software development helps in this respect [SS92, Som92]. 

In the exploratory model a working system is developed as quickly as 
possible. Thereafter modifications are made to the system until it meets all its 
requirements. This model is especially useful when the requirements are not 
known or not well understood from the beginning. Thus exploratory software 
development also means the production of software to meet partially known 
requirements. Testing the product leads to more requirements and results 
in modifications to fulfill them. This process is repeated until the developed 
software system performs satisfactorily. As there is no complete specification, 
the system cannot be evaluated by comparing it to its specification. Instead, 
adequacy of the system has to be demonstrated and evaluated, which can 
only be done by subjective judgments. 



www.manaraa.com

154 12. Software Process Models 

Fig. 12.2. Exploratory software de­
velopment 

Large, longevous software systems are usually not developed by using ex­
ploratory programming. This is because managing an exploratory software 
process is difficult due to the lack of well-defined stages and regular docu­
ments. Thus evaluating the progress of a project becomes difficult. 

Exploratory software development is best suited when an inherent goal of 
the project is to identify elusive requirements (specification), to establish a 
suitable system architecture (design), or to explore possible implementation 
techniques. Exploratory software development involves repeatedly applying 
small steps. Each step ideally results in an improvement of the current version 
of the software system until both customers and developers are satisfied with 
the result (see Fig. 12.2). One step may last several weeks, several hours, or 
even less. The usefulness of exploratory software development emerges from 
the lack of alternatives in many situations. 

Both customers and developers not yet knowing exactly what they re­
ally want is a typical development situation that lends itself to exploratory 
development. Programmers also might not know how to solve certain imple­
mentation problems. In such cases it is appropriate to work with experimental 
versions of a software system. Experimenting gives both customers and de­
velopers new insights into their problem domains and thus brings them closer 
to better solutions. 

The waterfall model aims to provide customers with the complete prod­
uct by a certain date. The exploratory model delivers various operational but 
incomplete products which satisfy only a subset of the customers' require­
ments. Each delivery is supposed to fulfill more requirements until finally the 
complete product can be provided. This gives customers the possibility to 
work with the system without having to wait for the final product. It also 
enables them to assign priorities to outstanding functionality and to refine 
requirements. However, a contractual framework has to be provided to avoid 
endless requirement changes. 



www.manaraa.com

12.3 Prototyping Model 155 

Fig. 12.3. Prototyping 

Exploratory development challenges software engineers in that they have 
to create an open architecture. Any additions have to be incorporated into 
the structure of the existing system without destroying that structure and 
without yielding to an unmanageable, unextensible and unmaintainable sys­
tem. The difficulties encountered in the exploratory model should not lead 
to its general rejection but to its restriction to areas where it is applicable. 

12.3 Prototyping Model 

Rapid prototyping has become popular for the development of software sys­
tems with complex user interfaces. It shares similarities with exploratory 
programming, but its main objective is to determine requirements for the 
system to be developed. This is done by building a prototype that can be 
employed for user experiments. A prototype is a working model with a sub­
set of the end product's functionality, which is often constrained to the user 
interface. The prototype is changed and adapted until the user is satisfied 
(see Fig. 12.3). 

The purpose of the prototype is to enable customer and developer to agree 
on what the software system is supposed to do. This is a much better means 
of communication than a written specification. Once the prototype has been 
created, revised and accepted by the customer, software development can 
start. The development process can be carried out by adopting the water­
fall model, the exploratory model, or whatever seems appropriate. Since the 
prototype has been validated through interaction with the customer, the re­
sulting specification can be expected to be less prone to changes than it would 
be by agreeing on a written document. This should result in less feedback 
loops in the subsequent development process. 

Prototyping has many variations. For example, prototypes can be either 
thrown away or enhanced to the final system. Often prototypes are built with 
special prototyping tools or 4GL systems which may require disposal of the 
prototype. Many user interface tools provide a means of building a prototype 
and then extending it to the full system. 



www.manaraa.com

156 12. Software Process Models 

Prototyping is most effective for systems with complex user interfaces. 
Customers and developers must agree that the prototype is built to serve 
as a means for the definition of the requirements. There may be problems 
when customers get confused and see a prototype as a working version and 
are unaware of the efforts needed to transform it into a high-quality end 
product. 

Prototypes are useful for software components as well, especially those 
with complex user interfaces. However, many components provide function­
ality via a programming interface only, making prototyping less applicable 
and useful. 

12.4 Spiral Model 

Despite its difficulties, the waterfall model has been widely adopted by large 
software companies. Despite their usefulness, exploratory programming and 
rapid prototyping are not really an option for the large software systems 
these companies have to build. The main reason for this is that management 
of projects based on theses processes is difficult because of the lack of doc­
uments. Documents are needed by management to assess project progress. 
The waterfall model defines documents for being the result of each stage. 
In exploratory software development, iterations may be so rapid that up­
dating documents after each iteration is too expensive and time-consuming. 
The main goal of rapid prototyping is deliver a running system rather than 
a written document. After the completion of the prototyping phase, a writ­
ten specification may be created and followed up with the waterfall model. 
However, during the initial phase creating and updating documents remains 
too expensive and time-consuming. Furthermore, the document-oriented ap­
proach of the waterfall model has its drawbacks [Som92]: 

- Regular intervals 
In order to assess project progress, management needs documents at reg­
ular intervals. Regular intervals usually do not correspond with the time 
required to complete certain activities and to produce the needed docu­
ments. 

- Document approval 
Problems discovered during a process may be covered to avoid iterations 
and the need to change approved documents. 

- Transition 
Smooth transition from one phase to the next is rare. Very often phases are 
started before the documents of the previous phase have been completed 
and approved. 

- Inadequacy 
There are problems that are not well suited for a linear process as suggested 



www.manaraa.com

12.5 Twin Life Cycle 157 

Fig. 12.4. Boehm's 
spiral model 

in the document-driven waterfall model. Blind application of the model can 
lead to unnecessarily high project costs. 

A possible alternative is the spiral model, which is risk-based rather than 
document-driven or code-driven [Boe88] (see Fig. 12.4). The key character­
istics of this model are regular assessments of management risks and actions 
to counteract these risks [Som92]. Risk includes anything that can go wrong. 
Usually risk is a consequence of incomplete or inadequate information. Un­
certainties can be reduced by gathering and discovering further information. 

Each cycle of the spiral begins by specifying objectives like performance, 
functionality or resource consumption. The next step is to list alternatives, 
and their constraints, towards achieving these objectives. This is followed by 
assessing each of the alternatives against each objective. The result is the 
identification of risk sources that have to be evaluated in the next step. Risk 
evaluation may require a more detailed analysis, prototyping or simulation. 

The spiral model incorporates other process models. Prototyping may be 
used to resolve risks based on requirements. In addition, formal transforma­
tions or the waterfall model may be used for the whole or for parts of the 
system. 

12.5 Twin Life Cycle 

Incorporating reuse changes software process models. We have seen in Sec­
tion 4.3 that different organizational groups are involved in systematic reuse. 
We introduced domain groups, component groups and application groups. The 



www.manaraa.com

158 12. Software Process Models 

domain 
analysis 

analysis 
models 

application 
development 

generic 
designs 

component 
development 

components 

component 
reuse 

Fig. 12.5. Twin life cycle 

activities of these groups are not reflected in the process models described in 
the previous sections. 

Software process models and software reuse interact in two ways. First, a 
model mayor may not encourage developers to consider the reuse of exist­
ing components (design with reuse). Second, the resulting products (any­
thing from design documents to source code) will turn out to be more 
or less reusable (design for reuse). The twin life cycle model depicted in 
Fig. 12.5 gives an overview of development for reuse and development with 
reuse [Kar95]. 

The twin life cycle model provides only a rough overview, but it clearly 
demonstrates activities of domain, component and application groups. These 
activities, i.e., domain engineering, component engineering and application 
engineering are the topics of Chapters 13, 14 and 15. 

12.6 Summary 

We have considered various software process models, i.e., the traditional wa­
terfall model, the exploratory model, the prototyping model and the spiral 
model. In traditional software life cycles, software reuse is not considered 
to be an explicit part of the process. Instead, systems are designed to be 
developed from scratch. In the implementation process some implicit reuse 
might happen. Programmers may adapt previously written code or even get 
some source code from a library or other projects and adapt it to the re­
quirements encountered in the new system. The primary goal is to get the 
system finished. Typically, no attention is paid to whether there might be 
some components of the system to be considered for reuse in other projects. 

The twin life cycle distinguishes between development for reuse and de­
velopment with reuse. Subsequent chapters describe this in more detail. 



www.manaraa.com

13. Domain Engineering 

Contents 

13.1 Domain Analysis ... ................................. 160 
13.1.1 Information Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 161 
13.1.2 Products....................................... 161 
13.1.3 Benefits ........................................ 162 

13.2 Domain Analysis Activities . ......................... 163 
13.2.1 Domain Definition and Preparation ................ 163 
13.2.2 Data Collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 164 
13.2.3 Data Analysis and Classification .................. 165 
13.2.4 Evaluation ..................................... 165 

13.3 Domain Analysis Methods . .......................... 166 
13.4 Foda: Feature-Oriented Domain Analysis . ........... 166 

13.4.1 Context Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 166 
13.4.2 Domain Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 167 
13.4.3 Architecture Modeling ........................... 168 
13.4.4 Summary ...................................... 168 

13.5 Domain Implementation . ............................ 168 
13.6 Summary . ........................................... 168 

Software reuse can be improved by identifying objects and operations for a 
class of similar systems, i.e., for a certain domain. In the context of software 
engineering, domains are application areas. Examples of domains are airline 
reservation systems, software development tools, user interfaces and financial 
applications. The scope of a domain can be chosen arbitrarily, either broad, 
e.g., banking, or as narrow as simple text editing. Usually broad domains 
are built on top of several narrow domains. For example, the user interface 
domain may be regarded as sub domain of the airline reservation systems 
domain (and several others) [Pri87, Pri90j. 

In this chapter we provide an introduction to domain analysis (Sec­
tion 13.1) and depict activities (Section 13.2) and methods (Section 13.3) 
of domain analysis. In Section 13.4 we describe Foda as an example of a do­
main analysis method. The context of domain implementation is described 
in Section 13.5. A summary follows in Section 13.6. 



www.manaraa.com

160 13. Domain Engineering 

Q) 

.g> techn ical lite rature 

~ existing 

o custo 

applications 

mer surveys 
C 

.::£. expert advice 
C ·co 
E 
o 
-0 

requirements 

methods 
domain 
analysis 
methods 

management 
procedures 

! ! 
domain 

analysis 

domain i 
expert 

1 . t domain 
domain engineer 
analyst 

people 

Fig. 13.1. Context of domain analysis 

13.1 Domain Analysis 

taxonomies 

standards 

models 

languages 

components 

a. 
o 
3 
OJ 
:::J 

3 
o 
a. 
ro 
(Jl 

Common objects and operations are likely to occur in multiple applications 
within a domain and thus are candidates for reusable components. A domain 
is analyzed by studying several of its representative systems and by develop­
ing an initial view of the structure and functionality of these systems. During 
software development, information of several kinds is generated. One of the 
objectives of domain analysis is to make all this information readily available. 
When familiarity with the domain has been achieved and the representative 
systems are understood, information used in developing these systems as well 
as their common and variable parts are identified, captured and organized 
for later reuse in developing new systems in that domain. 

Domain analysis stresses the reusability of analysis and design, not code. 
This is done by deriving common architectures, generic models or specialized 
languages that substantially increase the power of the software development 
process in the specific problem area of the domain. Domain analysis can be 
seen as a continuing process of creating and maintaining the reuse infrastruc­
ture in a certain domain. Fig. 13.1 shows the inputs, outputs, controls and 
mechanisms of domain analysis [Pri90j. 

A vertical domain is a specific class of systems. A horizontal domain 
contains general software parts being used across multiple vertical domains. 
Examples of horizontal reuse are mathematical function libraries, container 
classes and Unix tools. 

Domain-specific reuse is usually accomplished by separating domain en­
gineering and application engineering. The goal of domain engineering is to 



www.manaraa.com

13.1 Domain Analysis 161 

identify objects and operations of a class of similar systems in a particu­
lar problem domain. Typical activities in domain engineering are domain 
analysis, architecture development, reusable component creation, component 
recovery and component management. Application engineering means soft­
ware engineering taking the results of the domain engineering process into 
consideration, Le., identifying reuse opportunities and providing feedback to 
the domain engineering process (see Chapter 15). 

13.1.1 Information Sources 

There are several sources of information that can be used for domain analysis 
(see Hess et al. [HCK+90]). The most important sources are existing applica­
tions and domain experts. Requirements of applications can be used for the 
domain model. Their designs show the architecture of typical applications of 
the domain. Domain experts often have knowledge that is unavailable else­
where. Additionally, they can serve as consultants during domain analysis, 
identify future trends, and help to validate the outputs of domain analysis. 
Theories, techniques and methods may be taken from technical literature. Ex­
isting standards and customer surveys provide other inputs for the analysis 
of a domain. 

13.1.2 Products 

Domain analysts extract relevant information and knowledge from existing 
applications. They are supported by experts in the domain of consideration. 
Any source of information like source code, requirements, design documents, 
user manuals, etc. can be used for this purpose. The domain engineer helps 
in organizing and encapsulating the extracted knowledge in the form of the 
shown outputs, Le., taxonomies, standards, models, languages and reusable 
components. The whole process is guided by management procedures and 
domain analysis methods [Pri90]. 

Domain analysis is not a single process but a continuing effort of consider­
ing new systems and refining the results. Specific outputs of domain analysis 
activities have been described by Braun [Bra94d], Hooper/Chester [HC91] 
and Prieto-Dfaz [Pri90]: 

- Domain definition 
description of a domain's context 

- Domain model 
identification of objects, operations, and relationships that are likely to 
occur in more than one application and characterize applications in the 
domain (also identification of areas of variation in systems of the domain) 

- Domain requirements model 
identification of requirements that are likely to occur in more than one 
application and characterize applications in the domain 



www.manaraa.com

162 13. Domain Engineering 

- Architecture model 
design and implementation structure of software in the domain 

- Domain taxonomy 
single hierarchies, semantic nets, faceted classification schemes, etc.; the 
taxonomy can have different levels of complexity and can be developed 
incrementally with increasing knowledge about the domain. 

- Domain language 
a common vocabulary for describing these objects, operations and relation­
ships, and for creating a standard for classifying and describing components 
in the domain 

- Domain standards 
design methods, coding standards, management policies, development pro­
cedures like walk-throughs, etc. 

- Reusable components 
common objects within the domain are candidates for reusable compo­
nents, possibly resulting in a reference architecture and/or a common de­
sign framework 

The goal of domain analysis can also be to support the generative approach of 
software reuse by building an application generator. In an attempt to formal­
ize the process of building application generators, Cleaveland has identified 
activities that are closely related to domain analysis [Cle88]. 

We are primarily interested in components. In the context of domain 
analysis we can distinguish the following categories: 

- General-purpose components 
can be used in various applications of different domains (horizontal reuse). 

- Domain-specific components 
are more specific and can be used in various applications of one domain 
(vertical reuse). 

- Product-specific components 
are very specific and custom-built for a certain application; they are not 
reusable or only to a very small extent. 

13.1.3 Benefits 

Domain analysis can be viewed as a gathering of domain experience and 
domain knowledge of experts. Domain knowledge contains information about 
how problems in a certain domain are addressed in software systems [HC91]. 
Experience and knowledge are accumulated until they reach a threshold at 
which abstractions can be formed and prepared for reuse. The benefits of 
domain analysis can be summarized as follows [Kan89]: 



www.manaraa.com

13.2 Domain Analysis Activities 163 

- reuse of domain knowledge 

Fig. 13.2. Steps of domain 
analysis 

- reuse of components in a certain context, i.e., domain-specific components 
- domain-specific model for classification, storage and retrieval of compo-

nents 
- framework for tooling and systems synthesis from reusable components 
- large-grain reuse across products (in the same domain) 
- identification of reusable software components 

The reuse of domain knowledge is of increasing importance as the areas to 
which software is applied become larger. This makes it difficult for companies 
to find software engineering personnel with the required application domain 
knowledge. Results from domain analysis can be used not only for reuse but 
also for the education of new staff providing them with general structures 
and operations of systems in a particular domain. 

13.2 Domain Analysis Activities 

Activities involved in domain analysis have been described by various authors, 
e.g., Arango [Ara94a, Ara94b], Karlsson [Kar95] and Prieto-Dfaz [Pri87, 
Pri90, Pri91a, Pri93a]. Arango has compared several domain analysis meth­
ods and extracted a common process [Ara94b]. We have distilled the follow­
ing activities from this comparison and descriptions by the other authors (see 
Fig. 13.2). 

13.2.1 Domain Definition and Preparation 

It is important that a domain be clearly defined and its boundaries be es­
tablished. A domain's width determines where the domain ends and another 
one begins. Its depth fixes the sub domains to be included or excluded in the 
analysis. A narrow definition of a domain should be the goal. 



www.manaraa.com

164 13. Domain Engineering 

After the definition of the domain, relevant data has to be identified and 
collected for the acquisition of domain knowledge. Reusable information is 
likely to be found in existing systems. Another important information source 
is domain experts. Domain experts are experienced people working and/or 
developing software in a certain domain, i.e., developers or users of systems in 
the domain. They are crucial both as sources of information and as reviewers 
for results of the analysis process. They should be involved in all processes 
of domain analysis. Besides domain experts, experienced people in software 
design and software reuse should be involved in all activities. Poorly docu­
mented and designed applications should be excluded from the analysis; they 
would otherwise increase costs without benefiting the process. 

An important part of this step is to decide whether it is worth continuing 
domain analysis. For example, considering the business objectives the chosen 
domain might not be the 'right' one because the expected return on invest­
ment might not be attractive enough. Once the domain has been defined and 
the decision to continue the analysis process has been made, the next steps 
should be planned. 

13.2.2 Data Collection 

Different approaches for data collection can be used, e.g., reviews of literature, 
interviews of experts, analysis of applications. 

Analyzing applications will reveal candidates for reusable components as 
well as models of the domain. Domain-specific components (objects, opera­
tions, relationships, constraints) have to be selected and/or defined. Product­
specific and general purpose components should be removed. 

In determining reusable components various levels can be chosen for anal­
ysis: a whole system, subsystems, individual source code components like 
modules, classes, functions, etc., or individual items of the requirements. Sim­
ple questions can help in identifying reusable components [HC91], e.g.: 

- How common is a component's functionality within the domain? 
- Is there duplication of a component's functionality within the domain? 
- Do components exist in various specializations, generalizations, or varia-

tions? 
- Is the design optimized enough for reuse in another implementation? 
- Can nonreusable components be made reusable by parameterization? 
- Are components reusable in many applications with only minor changes? 
- Can a nonreusable component be decomposed to yield reusable compo-

nents? 
- How valid is a component decomposition for reuse? 
- Can a component be modified and adapted for reuse? 
- Is a component hardware dependent? 



www.manaraa.com

13.2 Domain Analysis Activities 165 

In analyzing applications, care must be taken to not deduce wrong abstrac­
tions or bad ones that may have been used. It is important to rely on sev­
eral sources to complete and/or validate information gathered from a single 
source. Data must be verified for correctness, consistency and completeness. 
Irrelevant data must be recognized and discarded [Ara94b]. 

Different sources of information provide different types of information. 
Experts are better in providing general information, principles and explana­
tions. Applications reveal detailed information on architectures and design. 

13.2.3 Data Analysis and Classification 

The results of domain analysis can be manifold and differ among domains. It 
is important to classify and catalog them for future reuse. Guidelines will help 
to decide whether certain components may be used in certain contexts. Reuser 
manuals have to be written that help in reusing, adapting and modifying 
components. 

It is crucial to analyze similarities, variations and combinations of data. 
Data at this level can be entities, operations, events and relationships in the 
domain. Entities are reusable components of any abstraction level, depending 
on the kinds of components to be reused later, e.g., Ada packages, C functions. 

The activities in this step are not entirely different from activities in devel­
oping a single software system, i.e., in requirements analysis, data modeling, 
object modeling, etc. The main difference is that these activities are done for 
a set of applications, i.e., the applications of the particular domain for which 
the analysis is being done. 

Domain information is prepared by abstracting and generalizing func­
tions, objects and their relationships. Different views and levels of abstrac­
tions of static and dynamic structures can be captured. Various models can 
be developed, e.g., functional models, process models, conceptual models. 
Taxonomies and standards might also be useful for the domain and should 
be defined. 

Existing components can be re-engineered and redocumented in order to 
comply with quality standards set for the domain. 

13.2.4 Evaluation 

Domain analysis is an iterative process. New requirements might have to be 
added. Domain boundaries might change, or sub domains may might to be 
defined. 

Besides using and refining the models, it is helpful to evaluate the domain, 
i.e., its models and components. This can be accomplished, for example, by 
a test, i.e., by describing a specific system in the domain. Real application 
developments are the best evaluation and test of a domain, and constant 
refinement and tuning will be likely. 



www.manaraa.com

166 13. Domain Engineering 

13.3 Domain Analysis Methods 

Analyzing domains is not an easy task. In the previous section we discussed 
many difficult activities that are involved, e.g.: 

- recognizing domains 
- identifying the boundaries of domains 
- recognizing 'fundamental' concepts of domains 
- deciding when analyses are complete 
- validating domain models 

Domain modeling is a continuous and incremental learning process. Similar 
to software engineering, it is hard if not impossible to do domain analysis 
without some sort of systematic proceeding. Domain analysis methods have 
been introduced for that purpose. 

Arango has presented, compared and evaluated eight domain analysis 
methods [Ara94b]. These methods were found to be essentially similar, with 
the main differences in: 

- emphasis on certain data acquisition means over others 
- approach to modeling, e.g., functional vs. object-oriented techniques 
- overlapping subsets of notations 
- different groupings of activities with different names 
- same names with slightly different meanings 

We have chosen one of these methods, Foda, and describe it as representative. 
Foda comes close to being the union oftechniques in other methods [Ara94b]. 
It has had a major impact on the state of domain analysis [Pet96] and has 
also been used in the industry [CSPK92, PC91, ZaI96]. Additionally, there 
are detailed publications on this method with examples showing results using 
the method, e.g., Hess et al. [HCK+90]. 

13.4 Foda: Feature-Oriented Domain Analysis 

The Feature-Oriented Domain Analysis (Foda) method was developed at the 
Software Engineering Institute [HCK+90]. It defines a process and estab­
lishes specific products. The following subsections briefly describe the three 
basic phases of Foda, i.e., context analysis, domain modeling and architecture 
modeling. 

13.4.1 Context Analysis 

Defining the scope of the domain and its relationships to other domains is 
the purpose of context analysis. A context model documents the results; it 



www.manaraa.com

13.4 Foda: Feature-Oriented Domain Analysis 167 

defines the boundaries of the domain. Context models consist of structure 
diagrams and data flow diagrams. 

Structure diagrams show target domains in relation to other domains and 
define sub domains , superdomains, and peer domains. Data flow diagrams 
show the flow of data among all the domains. All subsequent analysis activ­
ities, i.e., feature analysis, entity relationship modeling, functional analysis, 
and architecture modeling (see below) are performed within the scope de­
fined in the context model. Thus the scope of a domain has to be chosen 
carefully. Commonality of domains, availability of domain expertise, and ex­
pected applications have to be taken into consideration when performing 
context analysis. 

13.4.2 Domain Modeling 

Analyzing commonalties and differences of problems being addressed by ap­
plications in the domain is the purpose of domain modeling. A variety of 
models that represent different aspects of these problems are the results of 
this phase. Domain modeling consists of the activities feature analysis, entity 
relationship modeling and functional analysis: 

- Feature analysis 
Feature analysis captures the understanding of end users about general 
capabilities of applications in a domain. This primarily includes services 
provided by applications, but also covers additional aspects like perfor­
mance considerations or hardware platforms of applications. 

- Entity relationship modeling 
Entity relationship modeling captures and defines domain knowledge for 
the implementation of applications in a domain. Entity classes represent 
object abstractions. Generalization (is-a) and aggregation (consists-of) re­
lationships specify commonalties, differences and composition structures. 

- Functional analysis 
Functional analysis identifies functional commonalties and differences of 
applications in a domain. Structural and behavioral aspects of applica­
tions are depicted, and major decision points with alternative decisions are 
captured (called issues and decisions). 

The development of components is considered during functional analysis. 
Features and issues I decisions are incorporated into the model by developing 
separate (refined) components for alternatives, by developing parameteriz­
able components (to be adapted to alternatives), or by developing general 
components with separate instantiations for alternatives [HCK+90j. 



www.manaraa.com

168 13. Domain Engineering 

13.4.3 Architecture Modeling 

Providing a software solution to problems defined during domain modeling 
is the purpose of architecture modeling. The architecture model serves as a 
base for detailed design and component development. 

The Foda architecture model is a high-level design of applications in the 
domain. Common components are identified and related with features, func­
tions, and data. The architecture may be defined at various levels of abstrac­
tion having components in each of the layers. 

13.4.4 Summary 

Table 13.1 summarizes the inputs, processes and outputs of the three Foda 
phases context analysis, domain modeling and architecture modeling. 

Context models describe the environments in which applications will be 
used. Feature models describe end users' perspectives of applications in do­
mains. Developers' understanding of domain objects and their interrelations 
is covered in entity relationship models. The functionality of applications from 
requirements analysts' perspective is reflected in data flow models and finite 
state machine models. Finally, architectural aspects of applications from de­
signers' points of view are depicted in process interaction models and module 
structure charts [HCK+90) (see Table 13.1). For more details on Foda the 
reader is referred to Hess et al. [HCK+90) and to Peterson/Cohen [PC91). 

13.5 Domain Implementation 

Domain engineering involves domain analysis and domain implementation 
[FI94). In the domain analysis phase commonalties and differences of systems 
in a domain are discovered and recorded. Domain implementation means the 
use the information collected in domain analysis to create reusable compo­
nents and new systems. 

The creation of new components is part of component engineering (see 
Chapter 14). The process of creating new systems is called application engi­
neering (see Chapter 15). 

13.6 Summary 

We have described aspects of domain analysis, including products, benefits, 
activities and methods. Foda has been presented as a representative of domain 
analysis methods. Domain engineering comprises not only domain analysis 
but also domain implementation. This is regarded to be part of component 
engineering and application engineering, described in subsequent chapters. 



www.manaraa.com

13.6 Summary 169 

Table 13.1. Summary of the Foda method 

Phase Input Process Output 

Context operating 

analysis environments, context analysis context model 
standards 

features, feature analysis feature model context model 

application domain entity relationship entity relationship 
Domain knowledge modeling model 

modeling domain technology, 
context model, data flow model 
feature model, functional 

entity relationship analysis finite state model, 
machine model requirements 

imp!. technology, 
process interaction 

Archi- context model, 
architectural model 

tecture feature model, 

modeling entity relationship modeling module structure model, design charts information 

Ways to effectively analyze domains and to represent and use results of the 
analysis are still major fields of research. Example issues in domain analysis 
research are knowledge acquisition and knowledge representation. Knowledge 
has to be represented in a way that it can be understood by humans and 
processed by computers. Arango has identified weaknesses of domain analysis 
methods, which pose additional areas of needed research [Ara94b]. 



www.manaraa.com

14. Component Engineering 

Contents 
14.1 Component Development . ........................... 171 
14.2 Component Generalization .......................... 173 
14.3 Component Certification ............................ 174 

14.3.1 Component Properties ........................... 175 
14.3.2 Certification Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 176 
14.3.3 Quality Assurance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 176 

14.4 Component Repositories ............................ 178 
14.5 Component Classification . ........................... 179 

14.5.1 Free Text and Keyword Classification .............. 179 
14.5.2 Enumerated Classification ........................ 180 
14.5.3 Faceted Classification. . . . . . . . . . . . . . . . . . . . . . . . . . .. 180 
14.5.4 Attribute-Value Classification. . . . . . . . . . . . . . . . . . . .. 181 
14.5.5 Automatic Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 182 
14.5.6 Indexing Vocabularies ........................... 182 
14.5.7 Comparison .................................... 183 

14.6 Summary . ........................................... 184 

Component engineering is software development for reuse. Systematic reuse 
requires a foundation of high-quality components with proper documentation. 
Such components cannot be simply extracted from existing applications. Get­
ting reusable components requires more effort. Components in applications 
are usually designed for special requirements. They have to be generalized to 
satisfy a wider range of requirements and documented to meet the informa­
tion needs of potential and actual reusers. Reusable components should also 
be self-contained and coherent. 

In this chapter we describe steps involved in the process of component 
engineering. Development of components is described in Section 14.1. Gener­
alization and certification of components follow in Sections 14.2 and 14.3, re­
spectively. Software repositories are depicted in Section 14.4, followed by clas­
sification of components in Section 14.5. A summary follows in Section 14.6. 

14.1 Component Development 

Even though software development based on reusable components will even­
tually surpass development from scratch, new development will still be nec-



www.manaraa.com

172 14. Component Engineering 

essary. Ideally, new developments result in generalized, reusable components 
rather than in specialized ones that are used only once. By developing with 
reusable components we search for, evaluate, adapt and integrate existing 
components in new contexts. By developing for reuse we develop components 
for reuse in other contexts than the one it was initially developed for. 

Unfortunately, most existing software has little or no reusability. In order 
to develop reusable components, we have to focus on attributes that influence 
reusability, i.e., generality, completeness, cohesion/coupling, portability and 
quality. For example, the following requirements on reusable components have 
been identified by Di Felice [DF93] (for reusable mathematical source code 
components) and Braun [Bra94d]: 

- generality, self-containment 
- high cohesion/minimal coupling 
- use of standardized architecture models and standardized interfaces (cre-

ated during domain analysis) 
- use of coding standards and naming conventions 
- modular/object-oriented design (high degree of information hiding) 
- possibility of parameterization 
- independence from hardware/compiler/operating system 
- proper documentation 

More general guidelines for the design of reusable components have been 
proposed by De Mey [dM95]: 

- Concepts used in a number of different places should probably be compo­
nents, e.g., user interface components. 

- If components require an undetermined or variable number of resources, 
these resources should probably be components, e.g., role components. 

- Composite components should contain only a small number of components 
and take advantage of hierarchical decomposition. 

- Components should strike a balance between abstraction and concreteness. 

Some of the above guidelines were given in the context of source code com­
ponents. However, most of them can be applied to any kind of components. 
For more details on the guidelines, although some of them are a little vague, 
the reader is referred to the given references [Bra94d, DF93, dM95]. 

Existing design methodologies, e.g., the Constantine Method or the Jack­
son Method, explicitly consider neither the creation of reusable components 
nor the reuse of existing components. However, different design techniques 
certainly have peculiar suitability for software reuse. Process-driven design 
and function-oriented design are typically done in a top-down manner. Start­
ing at a high-level, functional views are repeatedly refined into more detailed 
designs. The data is defined only in relation to the functions. Data-driven 
designs concentrate on the data rather than the functions. Here a software 
system's data is identified in order to derive a design, and the functions are 



www.manaraa.com

14.2 Component Generalization 173 

only a by-product. In both cases an attempt is made to achieve a good de­
sign with respect to the given specification, i.e., to have functions and/or 
data that are needed for the software system to be built. This tends to re­
sult in custom-made components. However, the experience and talent of a 
software designer impact on the reusability of the resulting components. As 
Mittermeir and Rossak state [MR90]: "An excellent programmer can write 
highly reusable software with most methodologies." 

Object-oriented decomposition of software is a design approach that to 
some extent supports the reuse of components. However, this approach does 
not implicitly lead to reusable components either. Attention must be paid to 
the requirements mentioned above as well. Principles for designing reusable 
components have been identified, e.g., to increase correctness, compos ability, 
reusability and understandability of Ada components [HoI92]. Still, there is 
not a complete method for designing reusable components [FI94]. 

Besides developing and maintaining components, it is also necessary to 
observe the market and possibly buy certain components instead of develop­
ing them. 

14.2 Component Generalization 

Components should be independent of applications for which they were ini­
tially developed. They should also be sufficiently general to allow their reuse 
in future projects. However, specific characteristics of future potential clients 
should not be considered. 

Karlsson has identified techniques for generalization by analyzing reusable 
components [Kar95]. These techniques can be applied to components in order 
to make them more reusable. 

- Widening 
Components can be generalized by widening their scope, i.e., by extend­
ing the requirements. It is more likely that a widened component can be 
reused in future applications. The drawback of this approach is that initial 
development costs are higher and that the complexity of the component 
may become unnecessarily high. High complexity may hinder the compre­
hension process when the component is reused. Another drawback is that 
a component may have more functionality than is needed in many reuse 
contexts. This may lead to inefficiencies in execution speed and memory 
usage. 

- Narrowing 
In contrast to component widening, we can also narrow the scope of com­
ponents and limit their functionality to a set which is needed by several 
customers. Narrow components build the base for various extensions that 
are implemented in separate components. Narrowing is very common in 



www.manaraa.com

174 14. Component Engineering 

object-oriented programming, where the inheritance mechanism supports 
this concept. Narrowing addresses the problems and drawbacks of widen­
ing. Its own main drawback is the fact that an immense number of similar 
components may make it difficult to decide which one to choose in a certain 
context. 

- Isolation 
Isolating specific requirements to certain components or parts of compo­
nents helps in constructing the rest independently of whatever special­
ization had been chosen. Isolation is used to separate components from 
system-specific parts like operating systems or hardware. Parameters can 
also serve as a means of isolation; they can express various requirements. 

- Configurability 
Instead of building a component satisfying all requirements, it may be 
useful to develop a set of smaller components which can be composed in 
various ways in order to meet different needs. This approach is especially 
useful for optional requirements and for the separation of variant and in­
variant functionality. Application frameworks are examples of component 
sets that can be combined in various ways. 

These techniques are independent of a component's size and/or its develop­
ment process. 

Reusable software components should have broad and general function­
ality in order to increase their reusability. Generalized components may be 
reused even if the needs in a certain software system are more specialized and 
limited. This can cause an overhead which must be seen as the price for in­
creased productivity. Consider the reuse of a component that provides several 
services, but only one or some of them are needed. A typical example is the 
reuse of an entire application framework of which only a few components are 
needed. Because of the interdependencies, extracting the needed components 
from the framework may not be practical. Redundancy may also occur when 
different components provide the same functionality but are needed because 
of some other functionality. 

Generalizing components is important, but there is also the danger of 
over-generalization. Additionally, a proper balance must be found between 
reuse potential and ease of implementation [DvK87]. 

14.3 Component Certification 

We can build reliable and high-quality software systems only by using com­
ponents of high quality and reliability. Reused components must be free of 
design and implementation flaws. Users of software repositories often mis­
takenly assume that only components of high quality are included. Software 
developers should only reuse components they can trust and should refuse 



www.manaraa.com

14.3 Component Certification 175 

to reuse components of either low or unknown quality. Usually components 
benefit from multiple reuse in that they are more thoroughly tested. How­
ever, some effort has to be made in order to quantify their characteristics. By 
focusing on testing only, important aspects of quality are not being consid­
ered. The idea behind the certification of components is to guarantee that a 
specific set of quality guidelines has been met [DK93]. 

14.3.1 Component Properties 

To establish a certified component repository, we begin by defining proper­
ties for components. Developers must demonstrate that a component to be 
included into the repository has the required properties. Reusers are urged to 
inquire about a component's properties and make sure they meet their needs. 
Properties may cover various aspects of components, e.g., an assumption 
about its environment. It is possible to define several sets of properties, and 
components can be certified according to all or parts of these sets. The defined 
properties may vary among organizations and/or projects. There is no limit in 
size or precision. Anything that is considered relevant can be included. Exam­
ple properties for source-code components are the following [DK93, PSC+92]: 

- Guidelines 
A component should comply with certain sets of programming guidelines, 
e.g., an assignment operator and a copy constructor should be defined for 
C++ classes that declare a pointer member. Also see the guidelines III 

Section 14.1. 

- Testing standards 
A component in a repository should have been tested already according to 
certain testing standards. 

- Performance standards 
A component should comply with certain performance standards, e.g., 
memory utilization, numeric accuracy. A variety of efficient implementa­
tions may also be desirable. 

- Conceptual clarity 
A component should be clear and understandable. The interface should 
contain only what is necessary to reuse the component. 

- Coupling and cohesion 
A component should have high cohesiveness and low coupling. Any depen­
dencies on operating systems, compilers, hardware, etc. should be isolated 
and clearly documented. 

Some of these properties are still vague and have to be refined in order to 
be used for certification. It is clear that these properties are not restricted 
to a component's reusability. They are desirable for any piece of software. 



www.manaraa.com

176 14. Component Engineering 

However, multiple reuse of a component justifies putting more effort into 
enhancing the quality of components. 

14.3.2 Certification Levels 

Depending on the nature, reuse frequency and importance of components, 
the effort invested in their certification may vary. Four levels of certification 
are proposed by Merrit [Mer94): 

1. A component is described with keywords and an abstract and is stored for 
automatic retrieval. No tests are performed; the degree of completeness 
is unknown. 

2. A source code component must compile to be worthy. Metrics are deter­
mined if defined for the particular language. 

3. Testing, test data and test results are added. 
4. A reuse manual is added. 

Step 2 is clearly intended for source code components but can easily be made 
more general for other components as well. More on testing is provided in 
the next section. Documentation in general and reuse manuals in particular 
are described in Chapters 16 and 17, respectively. 

14.3.3 Quality Assurance 

We can demonstrate that components have certain quality properties by 
means of static analysis, formal inspections, testing, usage modeling, formal 
verification and benchmarking [DK93, WR94). 

- Static analysis 
Static analyzers can check various properties, especially of source code com­
ponents, without the need for execution. Properties that can be checked 
include unreachable code, set/use anomalies of variables, component cohe­
sion, etc. 

- Formal inspections 
Certain properties of components may escape automatic examination and 
require human inspection. Such properties include specification consis­
tency, documentation quality, design correctness, test coverage, etc. 

- Testing 
Testing can be applied to any executable components, i.e., primarily source 
code components, but also their specifications and designs (in case they 
are expressed in executable notations). Testing cannot demonstrate the 
absence of errors, but rather it is helpful in finding them. Nevertheless, 
testing can be beneficial in establishing a certain degree of trust in the 
reliability of a component. 



www.manaraa.com

14.3 Component Certification 177 

Table 14.1. Quality assurance techniques 

Emphasis Advantages Disadvantages Typical uses 

Static limited checking simple 
analysis automated application, lack design rules 

of available tools 

Formal widely applicable, labor intensive, checking 

inspection exploits human checking possibly functional 
skills incomplete correctness 

flexible, gives resource intensive, checking the Testing some confidence 
in components not rigorous implementation 

simply to checking the 
understand and Usage apply, gives labor and implementation 

modeling confidence in resource intensive (mean time 

components 
between failures) 

Formal high degree of time consuming, checking 
lack of available safety-critical verification assurance tools components 

provides limited measurement of 
Benchmarks time and space 

quantification application performance 

- Usage modeling 
Usage models are adopted to model the external view of a component's 
usage. They provide a basis for statistical quality control. A component 
can be certified by modeling its usage, deriving usage profiles, generat­
ing and executing test cases, collecting failure data, and predicting future 
reliability [WR94). 

- Formal verification 
The best guarantee of any property is by means of formally proving it. 
Formal verifications are common for individual algorithms, for example, 
where it is necessary to show that loops terminate. Unfortunately, showing 
that a component's whole implementation is correct with respect to its 
specification is often too costly if not impossible. Besides, errors can also be 
made in the proof itself; this becomes more likely for complex components. 

- Benchmarks 
Performance measures like execution speed, response time and memory 
usage of components can be determined by benchmarks. 

Table 14.1 summarizes advantages, disadvantages and typical uses of these 
quality assurance techniques (see Dunn/Knight [DK93) and Wohlin/Runeson 
[WR94)). 



www.manaraa.com

178 14. Component Engineering 

14.4 Component Repositories 

A component repository is a database for the storage and retrieval of reusable 
components. It contains software components with all relevant information 
about them, including their design, history, interactions with other compo­
nents, classification (for retrieval) and documentation. A repository is the 
link between development for reuse and development with reuse. Ideally, a 
large set of components should be available for reuse. Component reposito­
ries are needed because it is impossible for humans to be familiar with all 
the information about these components or even to know about the exis­
tence of all components. The chance that a programmer will reuse a certain 
component instead of developing a new one depends on the availability of 
potentially reusable components in the repository, but it also depends on 
the mechanisms provided by the repository to find components and on the 
programmer's ability to search in the repository. 

We distinguish local, domain-specific and reference repositories [Moo94): 

- Local repository 
Local repositories stock a broad range of general-purpose components. 
They have little depth in their supply. 

- Domain-specific repository 
Domain-specific repositories provide special-purpose components within a 
well-defined scope and offer more depth; i.e., they provide alternative com­
ponents for specific tasks. 

- Reference repository 
Reference repositories assist in finding components in other repositories. 
They archive (references to) published components and serve as yellow 
pages. 

Potential reuse can be significantly enhanced by providing access to com­
ponent repositories spread over networks. In addition to accessing a central 
repository within (part of) an organization, developers can utilize compo­
nents over cooperating departments, cooperating companies, and even over 
the whole world by using the Internet. Naturally, copyrights become essential 
in this respect, depending on whether repositories are private, commercial, 
nonprofit, government or public-domain. 

Banker et al. have found some interesting facts in an evaluation of repos­
itories [BKZ93): 

- The level of reuse does not grow as the number of available components 
grows. 

- Most of the components are reused within the same projects. 
- Programmers tend to reuse components that they developed themselves. 

This suggests that search mechanisms provided by repositories are either 
inadequate and/or not fully exploited. 



www.manaraa.com

14.5 Component Classification 179 

Griss et al. suggest the use of different search mechanisms depending on 
the size of a repository [GFW94]. For small repositories (up to 50 compo­
nents) an on-line file or a printed list may be sufficient. Repositories with 
up to 200 components have been used effectively with well organized indices 
sorted under various headings. For larger repositories more sophisticated tool 
support is required (see the next section, Component Classification). 

14.5 Component Classification 

Finding and retrieving software components can be prohibitively difficult. 
The problem is often analogous to finding a book in a cluttered junkyard 
rather than in an organized library [Bra94d]. Browsing a library or searching 
it by specific attributes such as author and date of creation can help in finding 
certain components, but for effective retrieval a meaningful organization of 
a collection of components is essential. The better the organization is, the 
easier it is for reusers to spot suitable components. 

Classification is used to group similar components, i.e., all members of 
a group sharing one characteristic that components of other groups do not. 
Classification amounts to attaching search information to components which 
can then be used for retrieval. Several classification methods are applicable to 
software components, such as free text, keywords, facets and attribute-value 
pairs [FP94, Kar95]. In the next sections we describe these methods. 

In the literature the term component classification is used with two slightly 
different meanings. First, it can mean a component taxonomy as we have de­
scribed in Chapter 9, i.e., the classification of components in general. Second, 
it is used for the classification of particular components, i.e., how to classify 
concrete components in order to retrieve them for reuse in certain contexts. 
The latter is the topic of this section. 

14.5.1 Free Text and Keyword Classification 

Free text is the simplest form of identifying suitable components for reuse. 
Apart from the rigorous documentation that should accompany any compo­
nent intended for reuse, this approach requires no particular preparation for 
storage in the repository; searching is full-text in nature [FP94, Kar95]. 

Attaching keywords to components is another means of identification. 
Keywords are entered by the developer of a component and describe its prop­
erties. Keywords can be chosen either freely or from a controlled vocabulary. 
For retrieval, users enter keywords which are compared to those of the compo­
nents in the library. Keyword methods can be refined by enforcing a standard 
vocabulary, by applying weights to keywords, by adjusting for missing and 
superfluous keywords, and by adding composite terms [Kar95]. 

Both the free text and the keywords are matched exactly in a query. 
This does not account for potential near-matches, which can be achieved 



www.manaraa.com

180 14. Component Engineering 

000 Generalities 
004 Computer Science 
005 Computer Programming 

005.3 Programs 
100 Philosophy 
200 Religion 
300 Social Sciences 
400 Language 
500 Pure Science 
600 Applied Science 
700 Arts & Leisure 
800 Literature 

822 English Drama 
822.33 William Shakespeare 

900 Geography and History Fig. 14.1. Excerpt from Dewey decimal or­
der classification 

by relating similar words (synonyms) and providing a structure for the set 
of used words. A set of words with structure is called thesaurus. Different 
relations can be used to form such structures [Kar95]. 

The major advantage of free text searching is that it can easily be fully 
automated. This results in lower costs than would be necessary for human 
indexing. However, it is also quite inaccurate and can allow retrieval of un­
suitable components. 

14.5.2 Enmnerated Classification 

Enumerated classification schemes are hierarchical categories divided into 
subcategories, sub-subcategories, and so on. The Dewey decimal system is 
an example of an enumerated classification scheme used for the organization 
of book libraries [Dew79]. Fig. 14.1 shows part of this classification. The 
advantage of enumerated classifications is that they are easy to understand 
and use. 

A major shortcoming of the enumeration approach is its inflexibility. All 
categories must be defined initially. New topics can only be inserted at lower 
levels. This, for example, results in the classification of new technologies low 
in the Dewey decimal system. Additionally, this results in unbalanced, awk­
ward structures. Another shortcoming of the hierarchical approach is ambi­
guity because components can fit perfectly into various categories. For exam­
ple, structured systems programming could match any of the classes systems 
analysis (001.61), software (001.642.5), systems (003), or systems construction 
(620.73) [Pri91b]. 

14.5.3 Faceted Classification 

Disadvantages of enumerated classification have motivated the development 
offaceted classification [Pri89, Pri91b, PF87]. Facets are based on attribute­
value pairs and can be considered as perspectives, viewpoints or dimensions 



www.manaraa.com

14.5 Component Classification 181 

Table 14.2. Faceted classification example 

Facet Terms Description 

Function add, delete, move, compare, performed function ... 

Object characters, arrays, files, ... manipulated objects 

Medium buffer, table, file, tree, ... where action is executed 

Type file handler, lexical functional or application-
analyzer, scheduler, ... independent area 

Functional bookkeeping, database application-dependent 
area management, ... activity 

Setting car dealer, insurance, where action takes place computer store, ... 

of particular domains [PF87]. Important vocabulary of a domain is identified 
and analyzed into basic terms that are organized as facets. Components are 
then classified by synthesizing facet term pairs. 

Table 14.2 shows an example faceted classification scheme introduced by 
Prieto-Diaz and Freeman [PF87] (also see Poulin and Yglesias [PY93]). This 
scheme aims at the classification of software components with a size of up 
to about 200 lines of code. The facets junction, object and medium are used 
to characterize the functionality of a component. The other three facets de­
scribe the environment of a component, i.e., the type of the component, the 
functional area and the setting/location of the component (domain). 

Facets can be contemplated as a component's attributes with multiple 
values. A set of keywords with any kind of structure can be used for their 
representation. Advantages of the faceted classification scheme are that com­
plex relationships can be created by combining facets and terms, and that 
modifying the scheme is much easier than modifying a hierarchical scheme 
like the enumerated one. Facets can be changed individually without affecting 
other ones. 

14.5.4 Attribute-Value Classification 

A set of attributes and values is used for the attribute-value classification. At­
tributes can take arbitrary values. Retrieving components requires the exact 
specification of values for (all or a subset of) attributes [PY93]. 

Attribute-value classification is very similar to faceted classification (a 
simplification thereof). The difference is that faceted classification typically 
uses a small number of facets (seven or fewer). This limit is not common 
for attribute definitions. Additionally, facets and terms usually have an or-



www.manaraa.com

182 14. Component Engineering 

dering, which is not typical for attributes and values. Finally, with simple 
attribute-value pairs, synonyms cannot be handled properly (see Frakes and 
Pole [FP94]). 

Similar to enumerated classification, a shortcoming of attribute-value clas­
sification is ambiguity. In different components different terms can be used 
to describe the same (or similar) values. This can be counteracted by a con­
trolled terminology setting (see Section 14.5.6). 

14.5.5 Automatic Indexing 

Indexing software components manually is difficult and expensive. Automatic 
indexing is a low-cost way to construct retrieval systems. Many informa­
tion systems (such as WAIS, Archie and Veronica on the Internet) already 
provide automatic, yet primitive searching capabilities. Identifying software 
components requires more precision. A distinction can be made in automatic 
software indexing based on whether only the lexical level is used or whether 
syntactic and semantic analysis are included also. 

With only the lexical level, attributes for software components are auto­
matically extracted from their natural language documentation. This requires 
neither any understanding of the documentation nor any kind of syntactic or 
semantic knowledge. 

Classification based on knowledge bases with semantic information about 
application domains requires human resources to build these bases. 

An approach for automatic indexing of software components from natural 
language descriptions has been pioneered in the Rosa project [RG I94, RG I95]. 
In Rosa the system extracts lexical, syntactic and semantic information from 
software descriptions. This knowledge is used to build a 'frame-based internal 
representation' for the software components. 

14.5.6 Indexing Vocabularies 

Fig. 14.2 shows a taxonomy of indexing vocabularies [FP94]. The main dis­
tinction is made depending on whether a controlled or uncontrolled vocabu­
lary is being used. 

- Controlled vocabularies 
Controlled vocabularies limit the terms used for classification. For example, 
the Library of Congress Subject Headings lists acceptable and unacceptable 
terms to be used in descriptions. They are used in many public library 
catalogs. A syntax can also be given to limit the combination of terms. 

- Uncontrolled vocabularies 
Uncontrolled vocabularies do not have restrictions on the terms to be used. 
The terms either are extracted from the text under consideration or origi­
nate from some other source. Automatic indexing is typically used for the 
extraction of terms. 



www.manaraa.com

14.5 Component Classification 183 

Fig. 14.2. Taxonomy of indexing vocabularies 

Free text classification has no vocabulary at all. Keyword classification has 
a controlled vocabulary. Enumerated, faceted and attribute-value classifica­
tion use a controlled vocabulary. A thesaurus is often used for controlled 
vocabularies. 

14.5.7 Comparison 

Systematic classification of components is crucial for effective retrieval in 
large repositories. This is less important when only small numbers of compo­
nents are stored, when primarily generative reuse is used, or in organizations 
with low staff turnover (as people may accumulate information about avail­
able components over time) [FP94]. 

Frakes and Pole have presented an empirical study for the comparison of 
keyword, attribute-value, enumerated and faceted classification, which con­
cludes the following [FP94]: 

- The four methods did not show any significant differences in search effec­
tiveness (but produced partly different results). 

- All four methods did only 'moderately well' in terms of search effectiveness 
(see below). 

- Users did not clearly prefer any of the four methods. 
- Differences in user search times were significant, with the best results for 

enumerated searching, the worst for keyword searching. 



www.manaraa.com

184 14. Component Engineering 

Search effectiveness was measured by the number of relevant components 
retrieved compared to the number of relevant components in the repository 
(recaln and by the number of relevant components retrieved compared to the 
total number of components retrieved (precision). For more details on this 
study and its results, the reader is referred to the original publication [FP94). 

Poulin and Yglesias have reported experiences with the faceted classifi­
cation method in a large repository at IBM. Their experiences have revealed 
the need for a combination of classification methods, for an integration with 
text search techniques, and for the adoption of a hierarchical ordering of 
facets [PY93). 

14.6 Summary 

We have discussed aspects of component engineering, which involves the de­
velopment of components for reuse. Various aspects have to be considered in 
order to make components reusable; e.g., components must be general enough 
to be applicable in various contexts. Quality plays a major role for the ac­
ceptance of components. Some kind of formal process for quality assurance 
helps in this respect as well. 

The classification of components is important for effective retrieval. Var­
ious classification techniques exist. Depending on the size of repositories, 
different techniques and/or combinations thereof may be useful. 



www.manaraa.com

15. Application Engineering 

Contents 

15.1 Reuse-Driven Development .......................... 185 
15.1.1 Component Reuse ............................... 186 
15.1.2 Component Modification and Adaptation .......... 187 

15.2 Component-Based Life Cycle ........................ 188 
15.2.1 Reuse Activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 189 
15.2.2 Reuse Spiral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 190 
15.2.3 Software Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 191 

15.3 Domain Analysis and the Software Life Cycle ....... 192 
15.4 Summary ............................................ 193 

Application engineering is software engineering with the systematic reuse of 
existing components and domain knowledge. Applications should be built by 
assembling components. In case needed components are not available they 
have to be specified and provided by the component group. The component 
group is responsible for finding and possibly adapting suitable components. 
The application group is encouraged to consider the use of components from 
the beginning of the project. This should maximize the reuse of existing 
software components and reduce overall development costs. 

In this chapter we discuss aspects of application engineering. Reuse-driven 
development is described in Section 15.1. Reuse considerations for the soft­
ware life cycle are discussed in Section 15.2. The incorporation of domain 
analysis is the subject of Section 15.3. A summary follows in Section 15.4. 

15.1 Reuse-Driven Development 

In the traditional reuse approach, developers are encouraged to look for 
needed components after most of the design work has been done. Rather 
than waiting until the design is done (and then looking in vain for match­
ing components), software products need to be designed around available 
software components [Gri93]. 

Too often reuse is incorporated too late in the development process. This is 
demonstrated in Fig. 15.1 and Fig. 15.2, which show the stages of development 
with reuse and of reuse-driven development. 



www.manaraa.com

186 15. Application Engineering 

- Development with reuse 

Fig. 15.1. Develop­
ment with reuse 

First a high-level design and specifications of needed software components 
are created. This is followed by a search for suitable components which, 
possibly after making adaptations, will be incorporated into the system. 

- Reuse-driven development 
In reuse-driven development the system specification and the architectural 
design are already influenced by available software components. The design 
is based on available components and, compared to development with reuse, 
results in a higher degree of reuse. 

Reuse-driven development may induce compromises in the specification, caus­
ing the design to be less efficient, but this is compensated by lower develop­
ment costs and higher system quality. 

Development based on existing components is done in a bottom-up fashion 
rather than top-down. For example, object-oriented programming requires 
bottom-up design in order to utilize existing classes. This approach is different 
from designing a system top-down and creating custom-made and specific 
(sometimes highly coupled) components. 

Many aspects of component reuse have been described in Chapter 14 
about component engineering, e.g., repositories and classification. In the fol­
lowing, we consider activities not covered so far, i.e., component reuse in 
general and component adaptation/modification in particular. 

15.1.1 Component Reuse 

For effective reuse, it must be easier to find components than to develop 
them from scratch. (Component repositories and classification techniques are 
described in Chapter 14.) Finding suitable components does not mean finding 
exactly what is needed. Locating similar components can be sufficient. 



www.manaraa.com

15.1 Reuse-Driven Development 187 

Fig. 15.2. Reuse-driven development 

After components have been found, they must be understood in order to 
reuse them. Finding and understanding are related because selecting a com­
ponent for reuse requires knowing what the component does. Understanding 
becomes even more important when the component has to be modified. Ad­
equate documentation is significant for this step. 

Building a software system out of a set of unmodified components is the 
ideal scenario. Typically, at least some of the components have to be adapted 
to specific needs of the particular software system to be built. Components 
can be modified in various ways, e.g., by changing internals or by adding new 
features. 

Once a component provides the required functionality, it has to be in­
corporated into the software system. The goal is to maximize reuse and to 
minimize basic development efforts. However, typically, existing components 
will not suffice to build new systems. At least a few components will have to 
be built from scratch. Ideally, these components are developed for reuse and 
added to the repository as well. 

15.1.2 Component Modification and Adaptation 

In many cases a component does not perfectly fit the required needs, and 
modifications are required. A good understanding of a component is essential 
to perform this task. The means of possible modification plays a role in the 
evaluation process and influences the selection of a component from possible 



www.manaraa.com

188 15. Application Engineering 

candidates. At this point the development of a new component may turn out 
to be better than modification of an existing one. 

Investigating required modifications for several components can be costly, 
especially when sufficient information is not provided for this purpose. Mod­
ifications can be necessary on the functional level, i.e., when a component's 
functionality does not fully meet the reuser's requirements. Nonfunctional 
modifications include qualitative properties like portability, efficiency and re­
liability. Modifications may take different forms [Som92j: 

- Adding functionality 
Additional functionality may be necessary due to additional requirements 
that did not exist and/or were not considered when the component was 
developed. The extended component may replace its predecessor in the 
repository or may be added separately. 

- Removing functionality 
It is very common that reused components, through their required gener­
ality, have more functionality than is required in certain reuse contexts. 
Removing unneeded functionality may be necessary for efficiency reasons. 

- Generalizing 
Modifications to a component's implementation suggest that the compo­
nent may not be general enough. In this case reviewing the component for 
possible generalizations is recommended. For more information on compo­
nent generalization, see Section 14.2. 

In the literature the terms modification and adaptation are not clearly dif­
ferentiated. We suggest using the term adaptation for minor modifications, 
i.e., modifications that were in some way planned by component develop­
ers (e.g., parameterization) and/or are supported by component technology 
(e.g., inheritance). For example, re-engineering components clearly goes be­
yond adaptations and can be seen as white-box reuse. 

15.2 Component-Based Life Cycle 

Reuse must be seen as an integral part of the software life cycle. This is 
the only way to systematically get away from simple code reuse or no reuse 
at all. Boehm's spiral model is a good starting point for this challenge as it 
offers a combination of other life cycles and explicitly addresses the important 
factor of risk. Even though every software project is exposed to many risks, 
projects employing software reuse seem to be open to greater risks due to 
uncertainties of components to be reused. This discourages project managers 
from applying reuse in their projects. Developing from scratch is seen as 
harboring far less uncertainty. Applying Boehm's spiral model can help in 
identifying and resolving risks in general and reuse risks in particular. Many 



www.manaraa.com

15.2 Component-Based Life Cycle 189 

risks involved with software reuse stem from a lack of information about 
reusable components. Information provided with a component should include 
the following [BM92]: 

- detailed information about a component's functionality 
- guarantees that the component successfully performs the functions it claims 

to do, e.g., test results 
- information about possible modifications/adaptations and their conse-

quences for the overall function of a component 

Appropriate documentation is a necessity in assessing risks involved with 
a component's reuse. Additionally, component validation, verification and 
certification are means of reducing uncertainty for component reuse. 

15.2.1 Reuse Activities 

The software engineering process comprises activities that are needed to 
transform users' requirements into a software system. Hooper and Chester 
[HC91] and Kang [Kan87] have proposed refinements to the life cycle by 
adding reuse activities to the various phases of the life cycle as follows: 

1. Understanding 
understanding the problem and identifying a solution structure based on 
the predefined components 

2. Reconfiguration 
reconfiguring the solution structure to improve the possibility of using 
predefined components available at the next phase 

3. Retrieval 
acquiring, assessing and instantiating predefined components 

4. Adaptation 
modifying and adapting the components 

5. Integration 
integrating the components into the products for this phase 

6. Evaluation 
evaluating reusability prospects of components that must be developed 
and components obtained by modifying predefined components for con­
tribution to the set of predefined components 

The suggested activities include both development with reuse (steps 1 to 5) 
and development for reuse (step 6). 

For systematic reuse these activities have to be incorporated into the 
software life cycle. The spiral model offers the enough flexibility to accomplish 
this. Incorporating the reuse activities results in the reuse spiral. 



www.manaraa.com

190 15. Application Engineering 

determine obJectives, 
altem.llves Ind constraints 

understanding, retrieval , 
reconfiguration L.--+---.I 

evaluate alternatives; 
Identify and .. Iolve rtlk. 

assessment, 
evaluation 

L---.:::---,r----,.......J 

15.2.2 Reuse Spiral 

Fig. 15.3. Reuse spi­
ral 

Boehm's spiral model allows explicit and early consideration of reuse by iden­
tifying alternate means for the implementation of components of the system 
to be built. This is done at the beginning of each spiral and concedes the 
evaluation of suitable reusable components. Fig. 15.3 shows the spiral model 
with activities involved for software reuse in each of the four quadrants. 

The reuse spiral is not meant to replace Boehm's spiral, but rather con­
stitutes one of the many options that are intrinsic to the spiral model anyway 
[BM92]. We discuss these activities in the four quadrants in more detail be­
low. 

- Quadrant 1: understanding, retrieval, reconfiguration 
The first quadrant of the spiral model we identify objectives of the system 
to be developed, alternatives for the realization of components of the sys­
tem, and constraints imposed on these alternatives. In the context of reuse 
this means that we have to understand the problem and retrieve compo­
nents that can potentially be used in the given scenario. The components 
have to be evaluated and the solution structure may have to be changed 
based on the availability and functionality of components. 

Result of quadrant 1 is a number of components that are candidates for 
reuse for the realization of components of the system, and various solution 
structures based on the functionality of these components. 

- Quadrant 2: assessment, evaluation 
In the second quadrant of the spiral we evaluate alternatives and identify 
and resolve risks. Thus we have to determine needed modifications of com­
ponents, the effort needed to accomplish these modifications, and the risks 



www.manaraa.com

15.2 Component-Based Life Cycle 191 

add 

10=1 = = r--t---'-re::..;m.;.;.:;o..:..v.:;..e __ 

Fig. 15.4. Software 
evolution 

involved in doing so. Different alternatives are evaluated by risk and ef­
fort assessment. Existing risks have to be resolved, e.g., by retrieving more 
information about components or by experimenting with them. 

The result of this quadrant is the decision on how to implement the 
system part under consideration, i.e., which components to reuse and which 
modifications/adaptations to make. 

- Quadrant 3: modification, adaptation, integration 
The third quadrant of the spiral comprises the development of the next­
level product. The selected components have to be modified/adapted and 
integrated into the subject system. 

Result of quadrant 3 is the implementation of the system part to be 
developed. 

- Quadrant 4: evaluation, consolidation 
The fourth quadrant of the spiral involves planning for the next phases. 
In the context of reuse we first have to look back and evaluate reusability 
prospects of modified or new components for contribution to the component 
repository. If a separate team is available as component group, then all 
the information should be handed to this group; feedback about reused 
components and experiences made in quadrant 3 should be given to this 
group for reuse evaluation. 

The reuse spiral as presented above is not isolated from the original spiral 
model. Rather, it is one possible way of running through a cycle. New devel­
opment will always be an alternative to reusing existing components. Thus, 
even though a spiral starts with reuse in mind, it might end with a traditional 
waterfall model for new development of parts of the system. 

15.2.3 Software Evolution 

Requirements on software systems are not static but change over time. Main­
tenance efforts become increasingly difficult when a system has not been de­
signed for later extensions and modifications. Software systems are constantly 
changing products. 

Fig. 15.4 portrays the evolution of software systems. Components are 
continuously added, changed and removed from a system. This is a constant 



www.manaraa.com

192 15. Application Engineering 

domain 
analysis 

specification i 
application i 

Fig. 15.5. Domain analysis and the software life cycle 

process over the lifetime of the system and replaces the traditional devel­
opment/maintenance steps. Typically, any changes in the set of components 
involve one or more cycles in the reuse spiral presented above. 

15.3 Domain Analysis and the Software Life Cycle 

Domain analysis is an ongoing process with constant refinement of domain 
models based on experiences in the development of new applications. New 
applications should lead not only to refinements of domain models, but to 
new reusable components and to modified/improved existing components. 

Fig. 15.5 is adapted from Prieto-Diaz [Pri90] and depicts the integration 
of domain analysis and the software life cycle. Domain analysis starts with 
existing domain knowledge, e.g., existing applications of the domain. Subse­
quently, its output is used as input for the software life cycle. Any life cycle 
model can be used that is appropriate either for the whole domain or for a 
certain application thereof. 

The domain models support or even control various phases of the de­
velopment of new applications. Data gained during development is used as 
feedback for refinement of the domain models and for updating the reposi­
tory with reusable components. Thus every new development contributes to 
an increase of the maturity of both the domain knowledge and the component 
repository. 



www.manaraa.com

15.4 Summary 193 

15.4 Summary 

In this chapter we have described aspects of application engineering. For 
the design of applications, it is important that reusable components be con­
sidered early in the design process and that the design process be adapted 
to increase the potential reuse of components. The reuse spiral provides a 
framework for these considerations. Domain analysis should be done in par­
allel to component and application development and provides various inputs 
like components and/or domain models. 

Application engineering is component-oriented software development. We 
design and develop software systems in a compositional way; i.e., we create 
a set of components to work together. The components are not designed in 
isolation but rather to collaborate and to be reused in various contexts. 



www.manaraa.com

Part IV 

Software Documentation 



www.manaraa.com

16. Software Documentation 

Contents 
16.1 Documentation Categories .......................... 191 
16.2 User Documentation ................................ 198 
16.3 System Documentation .............................. 199 
16.4 Process Documentation ............................. 200 
16.5 Summary ............................................ 200 

Software systems contain all relevant 'information' in order to be executable 
on a machine. Human readers need additional information which has to be 
provided in the documentation of a software system. Documentation has to 
be produced during the software process for various categories of readers. 

All statements made subsequently about documentation apply to soft­
ware components and/or software systems. The documentation of software 
systems composed of software components should be a collection of the com­
ponents' documentation plus additional information. This means that the 
documentation of a component has to fulfill requirements similar to those 
on the component itself. For example, the documentation should be self­
contained, adaptable and extensible (in case the component is being adapted 
and/or extended). 

In this chapter we give a general introduction to software documentation. 
Reuse related topics of documentation are covered in Chapters 17 to 20. In 
this introduction we describe various categories of documentation in Sec­
tion 16.1 and describe each of these categories, i.e., user, system and process 
documentation in Sections 16.2 to 16.4, respectively. A summary follows in 
Section 16.5. 

16.1 Documentation Categories 

Documentation of a software product has to contain information for var­
ious readers. Information has to be provided for end users, management, 
developers and maintenance personnel (see Pomberger [Pom84] and Som­
merville [Som92]). 

Different reader groups have different information needs which are ad­
dressed in different kinds of information. End users need information that 



www.manaraa.com

198 16. Software Documentation 

enables them to efficiently and effectively use and administer the system 
(user documentation). Management needs help for planning, budgeting and 
scheduling current and future (similar) software processes (process documen­
tation). Developers need information about the overall system structure, 
about components and their interaction (system documentation). 

In contrast to a software product, a software component needs addi­
tional information for developers who reuse the component. In the follow­
ing sections we depict the classic documentation categories as described by 
Pomberger [Pom84] and Sommerville [Som92]. Reuse documentation is de­
scribed in Chapter 17. 

16.2 User Documentation 

Good user documentation is important for the commercial success of a soft­
ware product. Users need different kinds of information and there are different 
kinds of users, e.g., novice and experienced users. Users must be able to use 
a software system with the information provided in the user documentation. 
Additional assistance and/or further information should not be necessary. 

A component mayor may not be (directly) used by end users; thus user 
documentation of components is optional. However, components that are not 
full fledged applications but do interact with users may have user documen­
tation. The user documentation of an application being composed of such 
components may be composed of the documentation of these components. 

Sommerville proposes five parts for user documentation [Som92]. Depend­
ing on the size and kind of a software system, some of these may be optional 
or be combined with other parts. The five parts are: 

- Functional description 
outline of system requirements and provided services 
(for system evaluation) 

- Installation manual 
detailed information on how to install the system in a particular environ­
ment (for system administrators) 

- Introductory manual 
informal introduction to the system and description of standard features 
(for novice users) 

- Reference manual 
complete description of all features and error messages 
(for experienced users) 

- System administrator manual 
more general information for system administration 
(for system administrators) 



www.manaraa.com

16.3 System Documentation 199 

Other authors propose similar structures. For example, Pomberger sug­
gests three parts, i.e., a general system description (functional description), 
an installation and user manual (installation document, introductory man­
ual, reference manuaQ, and an operator manual (system administrator's 
guide) [Pom84]. 

16.3 System Documentation 

System documentation has to capture all information about the development 
of a software component/system. It should contain sufficient information such 
that a new member of the development or maintenance team can make modifi­
cations and extensions without further information and/or assistance. System 
documentation includes the following information [Pom84, Som92]: 

- Requirements 
contract between component user (end user and/or reuser) and component 
developer 

- Overall design and structure 
subcomponents and their interrelations 

- Implementation details 
e.g., algorithmic details 

- Test plans and reports 
for integration tests and acceptance tests 

- Used files 
in case component/system uses external files 

- Source code listings 
too often the only accurate and complete description of a component or 
system 

System documentation of components composed of smaller-grained compo­
nents typically contains the documentation of the components it is composed 
of. As mentioned at the beginning of this chapter, it is important for docu­
mentation composition that a component's documentation be self-contained, 
modifiable and extensible. 

Due to time pressure, system documentation is often neglected. Thus 
information is often incomplete and inconsistent. Literate programming as 
described in Chapter 18 provides a means for improving documentation com­
pleteness and consistency. 



www.manaraa.com

200 16. Software Documentation 

16.4 Process Documentation 

In contrast to user and system documentation, which describe a component at 
a certain point of time, process documentation describes the dynamic process 
of its creation. The reason for documenting the process is to support effective 
management and project control. Whereas user and system documentation 
have to be kept up-to-date, much of the process documentation becomes 
outdated. 

Process documentation is a collection of information that depicts the 
whole development process. Its documents include the following [Pom84, 
Som92]: 

- Project plan 
individual phases with estimates and schedules (for prediction and control) 

- Organization plan 
allocation and supervision of personnel 

- Resource plan 
allocation and supervision of resources other than personnel (e.g., machine 
time, travelling expenditures) 

- Project standards 
e.g., design methodology, test strategy, documentation conventions 

- Working papers 
technical communication documents that record ideas, strategies, and iden­
tified problems (contain information about the rationale of design deci­
sions) 

- Log book 
discussions and communication between project members (design deci­
sions) 

- Reading aids 
e.g., index of documents, word index, table of contents 

Process documentation helps in controlling the current project, i.e., con­
trolling project progress (project plans and estimates), controlling quality 
(standards, check points), and determining production costs (personnel cost, 
machine time). Another reason for the creation of this kind of documenta­
tion is that its information can be used when creating similar components or 
systems. 

16.5 Summary 

In this chapter we have introduced various kinds of documentation for soft­
ware systems. For the reuse of components, we additionally need reuse infor-



www.manaraa.com

16.5 Summary 201 

mation as described in Chapter 17. Fig. 16.1 summarizes the structure and 
contents of software documentation. 

Software documentation can be divided into user, system and process 
documentation. Software systems and software components have to be docu­
mented equally carefully. Depending on the kind and size of a component, its 
documentation may have different focal points; for example, user documen­
tation may be missing or process documentation may be only rudimentary 
for small source code components. 

Many books on software engineering provide further information on soft­
ware documentation (e.g., document quality, standards and preparation). 
Some software engineering books, however, reprehensibly ignore documen­
tation aspects; by doing so, they at least reflect the priority of documenta­
tion in many real software projects. By contrast, Bell et al. provide a focus 
on technical communication, history, strategies and processes of documenta­
tion [BBC+94]. 



www.manaraa.com

202 16. Software Documentation 

system 
documentation 

process 
documentation 

reuse manual 

Fig. 16.1. Documentation structure 

project standards 

working papers 

see Fig. 17.1 



www.manaraa.com

17. Reuse Documentation 

Contents 

11.1 Motivation .......................................... 203 
11.2 Reuse Manual ....................................... 206 

17.2.1 General Information ............................. 206 
17.2.2 Reuse Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 207 
17.2.3 Administrative Information. . . . . . . . . . . . . . . . . . . . . .. 207 
17.2.4 Evaluation Information .......................... 208 
17.2.5 Other Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 209 

11.3 Summary ............................................ 209 

In addition to the documentation we use for software systems (user, system 
and process documentation) we have to provide reuse documentation for soft­
ware components. Reuse documentation has to contain all the information 
needed for component selection, effective reuse, component modification, etc. 
The target audience is software engineers who have to decide whether a cer­
tain component fits their needs and who need extensive information about 
components' interfaces. For black-box reuse, implementation details of com­
ponents are not necessary for effective reuse. 

In this chapter we propose a structure for reuse documentation. Sec­
tion 17.1 provides a motivation for supplying reuse information. In Sec­
tion 17.2 we propose the structure for a component's reuse manual. A sum­
mary follows in Section 17.3. 

17.1 Motivation 

In order to effectively and correctly reuse a software component, information 
about various aspects of it has to be provided. This includes information that 
enables: 

- the evaluation of components in a set of possible candidates, 
- the understanding of a component's functionality, 
- the use of a component in a certain environment, and 
- the adaptation of a component for specific needs. 



www.manaraa.com

204 17. Reuse Documentation 

Good documentation of components is essential to software reusability. Reg­
ular documentation does not meet these needs. 

The amount and kind of information needed strongly depends on the form 
of a reusable component. Reusing assembler routines requires different infor­
mation than reusing an object-oriented class or a self-contained application. 

Documentation must be valued as an essential part of a software compo­
nent. Without proper documentation, a component is useless. Neither can it 
be retrieved when needed, nor can it be reused and adapted with reasonable 
effort. Documentation standards have to be established in order to guarantee 
the availability of important information and the completeness and consis­
tency of this information. A consistent structure makes the documentation 
more readable and better understandable. It helps the reuser in finding rele­
vant components and decreases the time needed for evaluation, actual reuse 
and adaptation of components. 

Another important aspect is that each component has its self-contained 
documentation. Letting the reuser filter out a component's documentation 
from a big document describing a set of components is bad practice. A com­
ponent's requirements, design, test and reuse information must stand alone 
and its dependencies and references to other documents should be minimal. 
Additional requirements on the documentation are its availability in machine­
readable form. This allows us to reuse the documentation for derivative com­
ponents and modify it according to the modifications made to the component. 
Clarity and understandability should be a matter of course for any documen­
tation. This is of special importance in fostering reuse. 

Imagine a repository with all possible kinds of components. In order to 
find and select components for reuse in a certain context, various questions 
have to be answered about these components: 

- What kind of component is it? 
An indication about the nature of a component is its platform. This spec­
ifies, for example, the programming language for source code components 
or the operating system of processes. 

- What is the component's functionality? 
Despite the technical subtleties of composition, a component's functional­
ity remains a crucial factor for its reusability. We have seen that complete­
ness, generality and applicability are factors influencing the reusability of 
components. 

- Can the component be reused in our context? How? 
Whether a component can be reused in a certain context depends on many 
factors. Let's suppose a component has the right functionality and is of the 
right kind (platform). Interaction plays an important role for reuse as it 
can either support or hinder it. High coupling with other components may 
require the reuse of (many) other components that would badly influence 



www.manaraa.com

17.1 Motivation 205 

performance and/or lead to overlapping functionality. User interaction may 
also prohibit a component's reuse. 

- What else is needed to reuse the component? 
Component interaction may require the reuse of other components as well. 
For example, certain libraries or an application framework may be neces­
sary in order to use a function or class. The reuse of an application may 
require a certain operating system. 

- Can the component be customized/adapted/modified? How? To what ex­
tent? 
Whether a component can be adapted to certain needs depends on several 
factors. If a component's functionality is close to our needs, it is more likely 
to be a reuse candidate. Whether the needed adaptations have been fore­
seen by the components' developers is another crucial aspect. Finally, the 
kind of component plays a role in how easily modifications can be made to 
the component. For example, object-oriented components are more likely 
to enable adaptations than procedure-oriented ones. 

- Can the component be interconnected with our components? 
This question can be answered by considering the platforms of a compo­
nent. Sometimes reuse over platform boundaries may be possible. Compo­
nents running on their own offer a greater variety of interconnection and 
need more attention in this respect. 

- Is the component's quality sufficient for our purposes? 
In critical parts of a software system, quality control at the reuse end 
may inhibit the inclusion of arbitrary components without proven quality. 
Some sort of component certification and defined levels of certification are 
required. More details on the certification of components are provided in 
Section 14.3 on page 174. 

Information with answers to these questions has to be provided in the reuse 
documentation. The answers to some of the questions may be obvious depend­
ing on the kind of a component. For example, a C++ class can obviously be 
reused in a software system written in C++j it can be customized by writing 
subclasses. The class' functionality may be obvious from its interface descrip­
tion, but typically some documentation will be mandatory. To what extent 
the class can be customized depends on its design and should be described 
in the documentation. The implementation of the class may use other classes 
and/or library routines that are not listed in its interface. The availability 
of these other components must be guaranteed in order to reuse the class. 
Even if reuse is possible, additional parameters may determine whether a 
component is actually reused, e.g., performance and cost considerations. 



www.manaraa.com

206 17. Reuse Documentation 

17.2 Reuse Manual 

A reuse manual should be defined and created for each component. The 
size, layout and contents of such a manual will vary according to the type 
of a component. However, it must contain all relevant reuse information. 
The kind of information needed for reuse has been proposed by many 
authors, e.g., Braun [Bra94d, Bra94aJ, Karlsson [Kar95], Krueger [Kru92] 
and Meyer [Mey94]. We suggest an outline consisting of the following five 
parts [Sam96]: 

- General information 
general information for evaluation purposes (overview) 

- Reuse information 
detailed information for actual reuse 

- Administrative information 
information about legal constraints and available support 

- Evaluation information 
detailed information for evaluation purposes 

- Other information 
additional information, e.g., references 

These parts are described in the subsequent sections. We assume that we have 
components of different types in a repository. In case a repository contains 
only components of one kind, e.g., C++ classes, then some of the entries may 
be superfluous, e.g., type of component. 

17.2.1 General Information 

This part contains general information about a component and serves eval­
uation purposes. It should provide enough information to decide whether a 
component is a candidate in a certain reuse scenario, but should refrain from 
being too detailed. If the information in this part contains too many details, 
the evaluation process will be encumbered. However, a final decision on which 
component to choose out of a set of candidates may require the inspection of 
information of the other parts as well. 

1. Introduction 
Is the component a candidate for potential reuse in a certain scenario? 
The introduction should contain a clear, concise initial statement about 
the component's function for initial selection, including name, identifica­
tion and overview of the component. 

2. Classification 
What information is used for the classification of the component? Classi­
fication information may be taken from other areas of the reuse manual, 
e.g., a component's functionality and platforms. 



www.manaraa.com

17.2 Reuse Manual 207 

3. Functionality 
What is the general functionality of the component? This item gives 
an overview of all externally visible operations and provides interface 
descriptions. 

4. Platforms 
On what platforms can the component be used? Examples are C++, C 
and OpenDoc. 

5. Reuse status 
What is the status of the quality of the component with regard to test, 
maintenance, finances, etc.? 

17.2.2 Reuse Information 

This part contains the essential information for actual reuse. It should include 
all the details necessary for installing, reusing and adapting the component. 

1. Installation 
Which steps (if any) have to be done to incorporate the component into 
a system, e.g., installation of an application? 

2. Interface descriptions 
What are the exact interface definitions for the entire functionality? 

3. Integration and usage 
How can the component be reused (correctly)? This has to contain de­
tailed information for effective reuse of the component, including inter­
faces, sample scenarios and diagnostic procedures (what to do if a prob­
lem occurs). 

4. Adaptation 
How and to what specific needs can the component be adapted? This 
information includes means of adaptation to specific needs with detailed 
information about how to accomplish this, e.g., available options, sub­
classing. 

17.2.3 Administrative Information 

This part contains administrative information such as legal constraints and 
available support. 

1. Procurement and support 
What is the point of contact to get help (e.g., in adapting the compo­
nent)? What are the source (if component is not directly available in 
repository) and ownership (any legal or contractual restrictions)? 



www.manaraa.com

208 17. Reuse Documentation 

2. Commercial and legal restrictions 
What are the commercial or legal restrictions on the use of the compo­
nent, e.g., purchase, special license or permission required? 

3. History and versions 
What is the history and current version of the component (including all 
prior versions, their developers and dates ofrelease)? What are the main 
differences compared to older versions? 

17.2.4 Evaluation Information 

This part contains more detailed information for the evaluation of a compo­
nent, including known bugs, limitations and quality statements. 

1. Specification 
What is the component's functionality in full detail, including functional 
and nonfunctional requirements? See Section 11.2 on page 145. 

2. Quality 
What is the quality of the component? This has to contain information 
about verification, applied tests, test results, available test data, retesting 
procedures, etc. 

3. Performance and resource requirements 
What (amount of) system resources are required for using the compo­
nent (e.g., memory, processor, communication channels)? What are the 
performance characteristics? 

4. Alternative components 
Are there similar components that could be used instead of this one? 

5. Known bugs/problems 
Are there any reports of unresolved problems, e.g., known bugs, desired 
enhancements? 

6. Limitations and restrictions 
What are the (technical) limitations and restrictions on the use of the 
component (e.g., capacities, programming language, operating system 
dependencies) ? 

7. Possible enhancements 
What are possible enhancements, e.g., to make the component more ro­
bust, to improve performance/maintainability, or to extend the compo­
nent's scope of reuse? 

8. Test support 
Are test cases and/or a test environment available for the component? 



www.manaraa.com

17.3 Summary 209 

9. Interdependencies 
Can the component be used stand-alone or must other components be 
used with it? 

11.2.5 Other Information 

Any other information not covered by the first four parts is subsumed in the 
last part. 

1. System documentation 
How is the component implemented? The system documentation includes 
requirements, design, implementation, etc. (see Section 16.3 on page 199). 
When a component is reused as a black box, its system documentation 
is not necessary for reuse purposes. 

2. References 
Are there references to any literature or other documentation which are 
useful for the reuse of the component? 

3. Reading aids 
Additional reading aids like index, table of contents, list of figures, and 
list of tables help in navigating through extensive documents. 

11.3 Summary 

Separate documentation is essential for effective reuse. Specific needs of 
reusers have to be addressed explicitly. In this chapter we have proposed 
a structure for a reuse manual. The outline of a reuse manual should be de­
fined and consistently created for all components in a repository. Naturally, 
adaptations may be appropriate depending on the nature of the components 
being stored. Fig. 17.1 summarizes the proposed structure and contents of a 
reuse manual. 

Any existing guidlines for documentation have to be applied for the reuse 
manual as well, e.g., compliance with accepted documentation standards; 
use of consistent structures, styles, and formats; consistency with the code; 
writing in clear and understandable form; etc. 



www.manaraa.com

210 17. Reuse Documentation 

s stem documentation 

Fig. 11.1. Structure of a reuse manual 



www.manaraa.com

18. Literate Programming 

Contents 
18.1 Concepts ............................................ 211 
18.2 Tool Support ........................................ 212 
18.3 Acceptance .......................................... 214 
18.4 Reuse Considerations ................................ 215 
18.5 Summary ............................................ 215 

The central idea of literate programming is to improve documentation qual­
ity by describing problems and solutions rather than executable programs. 
An important aspect is the integration of source code and documentation. 
Literate programming is primarily for system documentation. Thus reusers 
benefit from it only when doing white-box, glass-box, or grey-box reuse and 
when reading about the implementation in the system documentation. How­
ever, interface descriptions of source code components (Le., parts ofthe reuse 
manual) may be created in a literate manner for the reuse documentation as 
well. 

In this chapter we present aspects of literate programming. We discuss 
concepts in Section 18.1 and tool support in Section 18.2. Reasons for the lack 
of widespread acceptance of literate programming are given in Section 18.3. 
Reuse aspects of literate programming are considered in Section 18.4. A sum­
mary follows in Section 18.5. 

18.1 Concepts 

Programs are written to be executed by computers rather than to be read by 
humans. However, when writing programs, the goal of telling humans what 
we want the computer to do should be more important than instructing the 
computer what to do. 

Literate programming was proposed by Knuth [Knu84, Knu92]. Its idea is 
to make programs as readable as ordinary literature. The primary goal is to 
obtain not just an executable program but also a description of a problem and 
its solution, including assumptions, alternative solutions, design decisions, 
etc. Literate programming is a process leading to more carefully constructed 
software systems with better documentation. 



www.manaraa.com

212 18. Literate Programming 

There are often misconceptions about what a literate program is. Childs 
has provided a list of requirements from a practitioner's point of view [Chi91): 

- Integration of source code and documentation 
The source code and the system documentation have to come from the 
same source files. 

- Problem descriptions 
Literate programs should contain problem descriptions and an examination 
of alternative solutions rather than just a description of the final solution. 
Graphical representations should be used to communicate problems and 
solutions. 

- Logical subdivisions 
Literate programs should have logical subdivisions like chapters and sec­
tions. 

- Logical order 
The order of presentation of literate programs has to be based upon logical 
considerations rather than syntactic constraints of a programming lan­
guage. 

- Reading aids 
Additional readings aids like cross references and indexes should be pro­
vided automatically. 

Literate programs as produced with Knuth's Web system (see next section) 
consist of a series of sections. Fig. 18.1 shows part of a simple literate pro­
gram [Knu92). It consists of two paragraphs of documentation followed by the 
outline of a Pascal program. The complete program is given in [Knu92). Each 
section of a literate program contains documentation text and source code. 
Documentation text explains the subsequent source which contains contain­
ers that can be filled in later sections, e.g., (Other constants of the program 5). 
The sections are numbered (we have section 2 in Fig. 18.1) and the containers 
are suffixed by a number that indicates in which section the containers are 
defined. 

Besides documentation text and source code Knuth used macro defini­
tions. They served as a remedy for language deficiencies of Pascal and, thus, 
are not explained here. 

18.2 Tool Support 

The original Web system was developed by Knuth as a superset of the pro­
gramming language Pascal and the text formatting language 'lEX. The two 
languages were chosen for practical reasons. A Web source contains docu­
mentation text in 'lEX and program text in Pascal. Additionally, some extra 



www.manaraa.com

18.2 Tool Support 213 

2. This program has no input, because we want to keep it simple. The 
result of the program will be to produce a list of the first thousand 
prime numbers, and this list will appear on the output file. 

Since there is no input, we declare the value m = 1000 as a compile­
time constant. The program itself is capable of generating the first m 
prime numbers for any positive m, as long as the computer's finite 
limitations are not exceeded. 

(Program to print the first thousand prime numbers 2) = 
program prinLprimes( output); 
const m = 1000; (Other constants of the program 5) 
var (Variables of the program 4) 
begin (Print the first m prime numbers 3) 
end. 

This code is used in section 1. 

Fig. 18.1. Literate program excerpt 

features like code containers (mentioned in the previous section) can be used. 
Both the executable program and a high-quality documentation are gener­
ated from the same source. An architectural overview of the Web system is 
given in Fig. 18.2. 

Fig. 18.3 shows the source of the literate program excerpt of Fig. 18.1. 
Horizontal bars (I I) are used in the documentation text to enclose source 
text. At-signs and angles (co< CO» are used in the code to identify containers. 

A number of Web and Web-like systems have been developed. They have 
been adapted to different programming and formatting languages, e.g., CWeb 
[KL93, Lev93), FWeb [A090, Kro90] and NoWeb [Ram94]. Levy created 
CWeb based on Knuth's Web, but using the C and C++ programming lan­
guages. Krommes' FWeb is based on CWeb and supports several program­
ming languages. NoWeb was created by Ramsey and is an example of a 
literate programming tool that works with any programming language and 
supports 'lEX, 1l\TE]X and HTML back ends. Thus you can produce printed 

Fig. 18.2. Architecture of the Web 
system 



www.manaraa.com

214 18. Literate Programming 

~ This program has no input, because we want to keep it simple. 
The result of the program will be to produce a list of the 
first thousand prime numbers, and this list will appear on 
the I output I file. 

Since there is no input, we declare the value 1m = 10001 as 
a compile-time constant. The program itself is capable of 
generating the first Iml prime numbers for any positive Iml, 
as long as the computer's finite limitations are not exceeded. 

~<program to print the first thousand prime numbers~>= 
program print_primes(output); 

const m = 1000; 
~<other constants of the program~> 

var ~<variables of the program~> 
begin ~<print the first Iml prime numbers~> 
end. 

Fig. 18.3. Source of literate program excerpt 

documentation with page numbers as cross-references and/or on-line doc­
umentation with hypertext links. NoWeb was designed to be as simple as 
possible but still meet the needs of literate programmers. NoWeb's primary 
advantages are simplicity, extensibility and language independence. The pri­
mary sacrifice relative to Web is that code is not prettyprinted and that 
indexing is not done automatically. 

Most literate programming tools automatically provide extensive reading 
aids like tables of contents and indexes. These tools can and should be used for 
the entire documentation of software components, of which only a small part 
will have source code included. The advantage of using a literate programming 
tool for the entire documentation is that components are documented in a 
consistent way. 

18.3 Acceptance 

There are positive reports about the successful use of literate program­
ming in industry, e.g.,Elliot [Ell96] and at universities, e.g.,Childs [Chi91]. 
Still, despite its apparent advantages literate programming has not gained 
widespread acceptance, primarily due to the lack of tool support and tool 
integration. 

The more complex software systems get, the more important good, sys­
tematic documentation becomes. However, tool support to visualize the man­
ifold relations and to effectively browse through a system becomes equally 
important. For example, the complexity of class and object interrelations in 
object-oriented systems is difficult or impossible to manage without adequate 
tool support. 



www.manaraa.com

18.4 Reuse Considerations 215 

Unfortunately, we lack reasonable compositions of programming environ­
ment components like browsers and literate programming tools. This has 
hindered general acceptance of literate programming considerably, but will 
perhaps vanish when better tool (component) integration becomes available. 

Another drawback of most existing literate programming tools is their 
batch processing. Most computer users are used to modern word processing 
tools with graphical WYSIWYG (what you see is what you get) user interfaces. 
Even though the 'lEX text formatting system provides better quality output 
than most word processing systems, users are not willing to sacrifice ease of 
use and graphical user interfaces. 

Acceptance of literate programming has also been hampered by miscon­
ceptions like 'literate programs have to be monolithic' or 'literate program­
ming is the opposite of hypertext.' 

18.4 Reuse Considerations 

Literate programming is an important concept for increased quality of both 
software and documentation. It provides help in keeping documentation com­
plete and consistent. In this respect it is important for the reuse of software 
as well. 

Literate programming is clearly aimed at system documentation. When 
we reuse components as black boxes, we are not interested in their internals. 
Thus system documentation and literate programming are not necessary. 

For white-box (also glass-box and grey-box) reuse, system documenta­
tion becomes important for the reuse process. Thus literate programming 
is important for reuse when it becomes necessary to modify or enhance a 
component's behavior, or to eliminate flaws or existing restrictions. 

It is important that high-quality documentation describing the imple­
mentation of the component be available, and that documentation be kept 
consistent with any modifications and complete with respect to any exten­
sions. In this context literate programming is important for reuse because it 
supports both creating high-quality documentation and keeping it consistent 
and complete. 

A scenario of composing components suggests the composition of docu­
mentation as well. As with components, the need for modifications and exten­
sions arises for documentation. Available examples of literate programs, e.g., 
those from Knuth [Knu86b, Knu86d], do not support the notion of reusable 
components. 

18.5 Summary 

In this chapter we have presented the concepts of literate programming and 
discussed tool support, lack of widespread use, and reuse considerations. 



www.manaraa.com

216 18. Literate Programming 

Literate programming was designed to allow sequential reading of pro­
grams like books. Hypertext features were not explicitly mentioned originally, 
but can easily be incorporated. For example, the NoWeb system allows the 
creation of hypertext links in literate programs. 

Literate programming is applicable primarily for system documentation. 
However, as Childs has elaborated, it is more than just the integration of 
source code and documentation text. High-quality, complete and consistent 
documentation is important for reuse, making literate programming an option 
to be considered. 

In Chapter 19 we present a case study on the reuse of documentation. In 
this case study we demonstrate reuse measurement based on line and word 
runs (see Section 4.4 on page 48) and white-box reuse in literate programs. 



www.manaraa.com

19. Reuse Measurement in Literate Programs 

Contents 

19.1 Motivation .......................................... 217 
19.2 Line and Word Runs ................................ 218 
19.3 Case Study .......................................... 220 

19.3.1 Subject Systems ................................ 220 
19.3.2 Results ........................................ 221 
19.3.3 Consequences................................... 223 

19.4 Summary ............................................ 224 

Documentation requires mechanisms for systematic reuse similar to these for 
software. As a motivation for this statement, we present a case study on 
reuse measurement in some literate programs. The case study concerns how 
much reuse was done and how. By using literate programs, we simultaneously 
measure reuse in source code and documentation. 

In Section 4.4.2 on page 49 we introduced a reuse measure based on line 
and word runs. This measure is applicable to arbitrary texts, i.e., not only to 
source code but especially to documentation. In this chapter we demonstrate 
this reuse measure in more detail and-with the results-motivate system­
atic reuse of documentation. In Section 19.1 a motivation for the case study 
is provided. In Section 19.2 we describe line and word runs for reuse mea­
surement. The case study itself with a description of the subject systems, the 
results and consequences is presented in Section 19.3. A summary follows in 
Section 19.4. 

19.1 Motivation 

In the case study presented in this chapter we use line and word runs to 
determine the amount of ad-hoc reuse in literate programs. Literate programs 
allow us to investigate documentation and source code. 

The case study serves several purposes. It provides an example of reuse 
measurement with line and word runs, it shows examples of documentation 
reuse, and it demonstrates the need for systematic reuse of documentation. 



www.manaraa.com

218 19. Reuse Measurement in Literate Programs 

R I denticall len X 100 
eUSel,len = T l' 

ota I 

Reusel,len: line reuse percentage considering runs with 
minimum length len. 

I denticall ,len: number of identical lines in both texts 
(identical lines in runs with length < len 
are considered as being different) 

Totall: total number of lines 

Fig. 19.1. Reuse measurement based on line and word runs 

The case study was originally published in [CS96b, CS97]. Knuth's TEX 
systems were chosen for examples because they contain source code and doc­
umentation, are in the public domain and have consistent and complete doc­
umentation. 

In the rest of this chapter we demonstrate line and word runs in more 
detail and provide a small example. Then we present the results of the case 
study and discuss consequences. 

19.2 Line and Word Runs 

In order to determine the extent of reuse in a specific case, similarities and 
differences of texts have to be determined. Comparing lines and words gives 
a good indication of reuse. If line reuse is high, then obviously much reuse 
has taken place. If line reuse is low, but word reuse is high, then much reuse 
has taken place, but the reused text had been modified on a more local basis. 
Finally, if both line and word reuse are low, then apparently there is not 
much reuse at all. 

Fig. 19.1 shows how to determine reuse based on line runs. In order to 
evaluate reuse, we determine line and word reuse for various lengths. We 
denote line reuse with Rl and word reuse with Rw. The lengths used for 
reuse evaluation may vary depending on the input data. 

To give the reader a better idea we demonstrate line and word runs on a 
small example, the first paragraph of the chapter "Introduction to the syn­
tactic routines" of TEX and MetaFont. The lines of the paragraphs in TEX 
and MetaFont are listed in Fig. 19.2. Identical lines are marked with '=' at 
the beginning. Despite the high similarity, there are only three identical lines 
in these paragraphs. Words that appear in both systems have a box drawn 
around them. Words are regarded as any sequence of characters separated by 
blanks or newlines. The text of TEX in Fig. 19.2 contains 12 lines and 128 
words. The text of MetaFont contains 13 lines and 135 words. 9 lines or 30 
words have to be changed to transform the text of TEX to the text of Meta­
Font. This results in a line and word reuse of Rl = 25.0% and Rw = 76.6%. 



www.manaraa.com

19.2 Line and Word Runs 219 

'lEX: 
@:J \[21) I Introduction to the syntactic routines. I 

= I Let's pause a moment now and try to look at the Big Picture. I 
~ \ TeX\ I program consists of three main parts: syntactic routines, I 

= I semantic routines, and output routines. The chief purpose of the I 
= I syntactic routines is to deliver the user's input to the semantic routines, I 

one token at a time. I The I I semantic routines act as an interpreter I 
I responding to these I tokens, I which may be regarded as commands. And the I 
I output routines are I I periodically callei!iiiiil convert box-and-glue 

lists into a I compact I set of instructions ~ will ~ sent 

to a typesetter. I We have I I discussed the basic data structures and I utility 

routines [ill \ TeX\, I so we are good and ready to plunge into the I real activity by 

considering I the I syntactic routines. 

MetaFont: 
@:J \[30) I Introduction to the syntactic routines. I 

= I Let's pause a moment now and try to look at the Big Picture. I 
~ \MF\ I program consists of three main parts: syntactic routines, I 

= I semantic routines, and output routines. The chief purpose of the I 
= I syntactic routines is to deliver the user's input to the semantic routines, I 

while parsing expressions and locating operators and operands. I The I 
I semantic routines act as an interpreter I I responding to these I operators, 

I which may be regarded as commands. And the I I output routines are I 
I periodically called on to I produce I compact I font descriptions ~ can ~ 
used for typesetting or for making interim proof drawings. I We have I 

I discussed the basic data structures and I many [ill the details of semantic 

operations, I so we are good and ready to plunge into the I part of \MF\ that 

actually controls I the I activities. 

Fig. 19.2. Sample paragraph comparison 

The high difference between Rl and Rw indicates that the text was modified 
and polished. Some single words, i.e., that, be, of and the are identical. Such 
single words can result in a slightly higher Rw than may be justified by actual 
reuse. 

Table 19.1 contains the run lengths for lines and words of the example in 
Fig. 19.2. There are no long line runs (none longer than 2). Thus the line reuse 
percentage drops to zero with a run length of 3. However, there are many 
word runs with a length of at least 3 (in fact, even much higher). So the word 
reuse percentage drops slightly when the run length is increased to 2, but 
then stays at this level. The average length of word runs is 15.3, indicating 
that even for higher run lengths the reuse percentage will not drop much. 
This high word reuse percentage and low line reuse percentage indicates high 
reuse with extensive modifications. 



www.manaraa.com

220 19. Reuse Measurement in Literate Programs 

Table 19.1. Line and word runs in sample paragraph comparison 

len nl 

1 2 
2 1 
3 0 

len: 
nl, nw: 
avgl, avgw : 

MI,Mw: 
EI, Ew: 
RI, Rw: 

avgl MI EI RI nw avgw Mw 

1.5 2 3 25.0 12 8.2 30 
2.0 2 2 16.7 6 15.3 30 
0.0 0 0 0.0 6 15.3 30 

minimum length for runs to be considered 
number of line/word runs 
average length of line/word runs 
maximum length of line/word runs 
sum of lengths of line/word runs 
line/word reuse percentage 

19.3 Case Study 

Ew 

98 
92 
92 

Rw 

76.6 
71.9 
71.9 

We present sample reuse measurements based on line and word runs for 
three Webs (literate programming sources) from the 'lEX system: 'lEX, a 
book-quality formatting system [Knu86a, Knu86bj; MetaFont, a system that 
enables a programmer/artist to create a family of fonts for 'lEX [Knu86c, 
Knu86dj; and MetaPost, a close relative of MetaFont that enables the creation 
of high-quality graphics as encapsulated PostScript files. 

An outstanding feature of the 'lEX system is its implementation in the 
form of literate programs. The complete documentation allows reuse mea­
surement to reveal similarities that go beyond plain source code. 

We first briefly describe the investigated systems and then present the 
results. 

19.3.1 Subject Systems 

The 'lEX system and the Web processors were written in the original Web. 
The functions of these programs are described at a shallow level. For more 
details see Childs and Sametinger [CS97j and the references mentioned above. 

- TEX 
The 'lEX processor converts a plain text file containing document markup 
into a device independent graphics metafile. It reads a number of other 
files in this process to get font characteristics, document styles, etc. 

- MetaFont 
MetaFont reads a source file that is a metadescription of a font (family). 
It does significant graphics interpretations, solving of equations, and other 
items associated with the creation of a consistent family of fonts. 

- MetaPost 
MetaPost is a close relative to MetaFont. Its inputs have file layouts much 
like MetaFont sources. Outputs of MetaPost are book quality figures. 



www.manaraa.com

19.3 Case Study 221 

Table 19.2. Line and word lengths 

System Lines Words 

1EX 21,541 122,137 
MetaFont 20,481 109,307 
MetaPost 20,460 104,375 

'lEX, MetaFont and MetaPost operate on various common files, e.g., de­
vice independent files, font metric files, log files. Hence some kind of simi­
larity can be expected. Browsing the sources of 'lEX and MetaFont in book 
form [Knu86b, Knu86d) reveals many chapters with the same title. Similari­
ties in these chapters are obvious even from just turning the pages. MetaPost 
is a direct derivative of MetaFont; this should show the highest degree of 
reuse. 

19.3.2 Results 

'lEX's source contains about 21,500 lines and 122,000 words. MetaFont con­
sists of about 20,500 lines and 110,000 words. 'lEX and MetaFont are divided 
into 55 and 52 chapters, respectively. 26 of these chapters have the same title 
in both systems. These chapters contain 33.4 percent of the lines of the 'lEX 
system. 

'lEX and MetaFont contain sections of which the only difference is a re­
placement of the word 'lEX with the word MetaFont. Also, there are sen­
tences that have been improved by a change of word ordering or by inserting 
or deleting single words. Additionally, MetaFont has more index entries than 
'lEX, which also has an effect on the resulting reuse percentage. 

A high reuse percentage was determined by comparing MetaFont and 
MetaPost. MetaFont has 52 chapters; MetaPost has 49. 44 chapters appear 
in both systems with the same title. In Table 19.2 the number of lines and 
words are summarized for the subject systems. 

Table 19.3 shows some detailed results for line and word runs. The ab­
breviations used have the same meaning as in Table 19.1 on page 220. The 
left side shows some chapters that demonstrate the highest reuse. It is inter­
esting to note that, despite increasing run lengths for lines and words, the 
resulting reuse percentages drop only slightly. This is an indication of actual 
reuse rather than accidental similarities. 

The right side of Table 19.3 shows chapters that do not exhibit high 
reuse. The chapter "Saving and restoring equivalents" exposes some reuse 
with run length 1, but the numbers drops to zero quickly. This is similar to 
the comparison of two completely different chapters, Le., "Reporting Errors" 
and "Character Set", and does not result from actual reuse. The chapter 
"The command codes" is interesting in that there are no identical lines at 
all. Yet the reuse percentage for words does not completely drop to zero even 



www.manaraa.com

222 19. Reuse Measurement in Literate Programs 

Table 19.3. Run-based reuse percentages in 'lEX vs. MetaFont 

boO m 
t:: Q) ..., 
'i: -e --..., t:: 0 m ;:l Q) 0 m 

10< t) 10< 
0 0. -e ..., 

0 m -e 10< ..., ..., t:: Q) 10< 
10< Q) ;:l Q) 10< t:: 10<"" Q) m 0 0. (fj Q) Q) -ern 

S 
m 

boO 10< -e Q) 
t::-a gflo< .S Q) t:: -e 

S 
..., 

(fj 1m (fjQ) .... Q) ..., t) 
SQ) boO- 0 

...,..., 
10< (fj t::~ 10< t) 
0 

..., Q)boO t) o (fj 10< ;:l ...,t:: 0. (fj 
0. m(fj IS Q) o.~ Q) ..d t:: £-E ..d Q)..d 

t:r: U 1-4 C/lg' E-4 t:r:t) 

nl 359 206 301 10 291 163 359 
nw 2,022 1,097 2,333 83 1,803 1,367 2,022 

Rl. l 82.7 81.6 81.1 80.0 3.1 0.0 1.1 
RI.3 78.0 77.7 76.4 60.0 0.0 0.0 0.0 
RI.5 69.6 75.7 65.8 60.0 0.0 0.0 0.0 
RI.lO 41.2 69.9 50.2 0.0 0.0 0.0 0.0 

Rw•l 93.3 76.9 93.4 97.6 8.5 19.9 7.3 
Rw.5 91.9 75.8 92.6 96.4 0.5 5.7 0.0 
Rw.lO 89.3 72.2 91.3 96.4 0.0 5.2 0.0 
Rw.20 78.2 69.4 82.2 96.4 0.0 2.3 0.0 

with a run length of 20. The reason for this is that the first two introductory 
paragraphs of the chapter share high similarity, as shown in Fig. 19.2 on 
page 219. The command codes themselves are different in the two systems. 

Table 19.4 summarizes the results. It contains the reuse percentages 
yielded by comparing the entire systems. In the second line only similar chap­
ters are considered. Column Portion specifies the amount of these chapters; 
e.g., considering only 33.4% of 'lEX for the comparison yields a line reuse of 
42.8% and a word reuse of 60.7% (as opposed to 14.3% and 21.5%). 

More than 60 percent of MetaFont is reused in MetaPost, even though 
its size of about 20,000 lines and more than 100,000 words. A total of 24 
chapters has a reuse percentage higher than 90%. Except for three chapters 
all the other chapters have a reuse percentage higher than 70%. 

Table 19.4. Summary of reuse percentages 

Systems Portion Rl Rw 

'lEX -+ MetaFont 100 % 14.3 % 21.5 % 
33.4 % 42.8 % 60.7 % 

MetaFont -+ MetaPost 100 % 63.4 % 67.0 % 
80.8 % 78.5 % 85.1 % 



www.manaraa.com

19.3 Case Study 223 

More details on the results of these measurements can be found in Childs 
and Sametinger [CS96b, CS97]. 

19.3.3 Consequences 

Reuse measurement based on line and word runs can be used for many dif­
ferent purposes. Evaluation of white-box reuse is one example. Other ap­
plications are finding the (legal or illegal) reuse in technical/scientific pa­
pers, determining the amount of modifications from one version of software 
to another, finding potential locations for redesign, or finding the amount of 
"reuse" in programs handed in by students for programming courses [CS96b]. 

Using the proposed measures, we investigated some sample literate pro­
grams. By taking a closer look at these programs, we found, that software 
reuse had been successfully done, i.e., source code and documentation had 
been reused. 

Each system was created as a self-contained and homogeneous piece of 
work. In order to achieve this goal, reused parts from other systems had to 
be reworked and adapted carefully, if not the source code, then at least the 
documentation. Such adaptations included changing the system name (e.g., 
TEX to MetaFont), changing the word order or modifying single words for 
better layout results. This is white-box reuse at its best. 

Writing and documenting software systems from scratch leads to different 
system and documentation structures than building them by reusing existing 
components. Even when writing and documenting a system from scratch, 
planning to deliver reusable components as a by-product leads to a different 
structure or at least to more self-containedness of the various components of 
the system. 

If the TEX systems had been built with object-oriented techniques-which 
were not readily available at the time they were built-many classes could 
have been reused not by direct modifications but by inheritance. Documen­
tation needs a similar approach to adaptation and reuse without direct mod­
ification. This is the topic of Chapter 20. 

The books about the TEX system are perfectly harmonized. For example, 
the TEX book [Knu86b] has a lion as decoration at the beginning of each 
chapter. The MetaFont book [Knu86d] has a lioness. In an error message, 
when all anticipated help has already been given, the TEX user is invited to 
emulate Hercule Poirot. At the same point the MetaFont user is asked to 
emulate Miss Marple. 

When software systems are written with so much care, it is a pleasure to 
read them. And it is possible, though not necessary, to read them sequentially 
from the beginning to the end. We argue that building software systems out 
of reusable components leads to thinner books with more cross-references. 
This makes sequential reading less pleasant, but it helps to make reading 
more efficient. Documentation must be designed for reuse the same way as 
source code has to be designed for reuse. 



www.manaraa.com

224 19. Reuse Measurement in Literate Programs 

19.4 Summary 

We have given a description and examples of reuse measurement with line and 
word runs. The application of this measurement to literate programs has been 
discussed. The results show the application of this measurement. The systems 
under investigation cannot be considered representative of a wide spectrum of 
software systems. However, the results indicate that documentation must be 
written with care equal to that for source code in order to make it reusable. 

The documentation should have the same degree of explicit reuse as source 
code. Current techniques and tools do not sufficiently support this. In Chap­
ter 20 we demonstrate a systematic way to reuse documentation. 



www.manaraa.com

20. Documentation Reuse 

Contents 

20.1 Motivation ..... , ., .................................. 225 
20.2 Source Code Inheritance ............................ 226 
20.3 Documentation Inheritance .......................... 227 

20.3.1 Documentation Abstraction ...................... 227 
20.3.2 Documentation Inclusions and References .......... 228 
20.3.3 Documentation Views ........................... 229 
20.3.4 Documentation Hierarchies ....................... 231 

20.4 Summary ............................................ 231 

Documentation is an integral part of software components. When a compo­
nent is reused, its documentation has to become part of the documentation of 
the system or component to be built. As components are adapted, modified 
and extended, their documentation must follow suit. We need a systematic 
way of reusing documentation in a similar fashion as we reuse components. 

In this chapter we present inheritance as a means of systematically reusing 
documentation. After a short motivation in Section 20.1, we give an intro­
duction to source code inheritance in Section 20.2. Subsequently, inheritance 
and related object-oriented concepts are applied to documentation text in 
Section 20.3. A summary follows in Section 20.4. 

20.1 Motivation 

Many components have similar functionality or exist in several variations; 
they may even have the same functionality but different implementations. 
Documentation of such components is likely to share many similarities and 
differ only in some aspects. Similar to components, it is important that doc­
umentation be reused in a systematic way. 

Reusing software components is a typical task in object-oriented program­
ming. Class libraries and application frameworks provide good examples of 
such reuse. Modification and extension of software components without the 
need to make changes to the original component is a big advantage of object­
oriented technology. This is accomplished by defining classes by describing 



www.manaraa.com

226 20. Documentation Reuse 

classes: 
Rectallgle 

hape 

method of 
class Rectangle 

Fig. 20.1. Source code inheritance 

their differences, i.e., modifications and extensions to their base classes. Stan­
dard behavior is inherited from the base classes. Reusable software compo­
nents that are realized in an object-oriented manner can have many things 
in common (through inheritance). 

Adequate documentation is mandatory for software maintenance as well 
as for economic reuse of software components. Overlapping information is 
typical both for source code and for documentation. Therefore the inheritance 
mechanism should be applied to the documentation as well. 

20.2 Source Code Inheritance 

The source code of an object-oriented software system consists of classes 
containing variables (structure) and methods (behavior). Objects with the 
same structure and behavior are described in one class. From a documentor's 
point of view, classes and methods are equivalent to modules and procedures 
used in conventional programming. However, one of the differences between 
modules and classes is the inheritance relationship between classes. A class 
may inherit structure and behavior of another class and additionally extend 
and modify it. 

For example, classes Rectangle and Circle inherit from a class Shape, which 
defines the structure and the behavior that is applicable to all graphical 
objects. Rectangle and Circle are called subclasses (or derived classes), and 
Shape is called the base class. The source code of the classes Rectangle and 
Circle contains only the modifications and extensions to the base class Shape 
(see Fig. 20.1). 

The boxes in Fig. 20.1 indicate the existence of source code for a method. 
Rectangle objects can be drawn, outlined, moved and rotated, though the 
class Rectangle does not implement the methods Outline and Move; they 
are inherited from the base class Shape. The methods Draw and Rotate are 
overridden; i.e., Rectangle objects have their own Draw and Rotate methods; 
they do not use the methods of the Shape class. The arrows in Fig. 20.1 



www.manaraa.com

20.3 Documentation Inheritance 227 

t t 
dbxtool 

I I I dbx 

I\.l <I) 

E 'Vi 

'" 0.. 
Z 0 

\: 
>, 

v.l 

documentation of dbxtool 

t t t t_t t 

I I I I I B 
C \: <I) I\.l E <I) 0 

0 c: Cll ..!:! Vl 

.9 '" I\.l «i :.0 0. <I) E ii: 0. :::::> I\.l 
!:! ·c \: 

U 0 0 <U 
";;; Vl .... v.l 
:> <U :> 
<t: Q \: 

W 

t 

'" ~ 
0 
Z 

t 

D 
<I) 
OJ) 
::l 

III 

Fig. 20.2. Documen­
tation inheritance 

indicate the direction of view in order to determine the methods that are 
provided and used by class Rectangle. 

20.3 Documentation Inheritance 

As with object-oriented source code, documentation inherits the contents 
of its base documentation. We use documentation chapters and sections as 
units for inheritance. Chapters and sections are portions of documentation 
text with a title. Chapters are subdivided into sections, which may be further 
divided into subsections, etc. Chapters and sections are defined by the pro­
grammer/technical writer and used for inheritance in the same way as classes 
and methods, i.e., chapters and sections are either left unchanged, removed, 
replaced or extended. 

Fig. 20.2 depicts the structure of the documentation of the Unix tools dbx 
and dbxtool. The documentation of dbx consists of eleven sections; dbxtool 
has six documentation sections. dbxtool inherits the sections 'Availability', 
'Usage', 'Files' and 'Notes'. It has its own sections on 'Name', 'Synopsis', 
'Description', 'Options' and 'See also' . The section 'Environment' is not ap­
plicable to dbxtool and thus is hidden. The bugs of dbx are also available in 
dbxtool, therefore the 'Bugs' section had been extended. For more details on 
this kind of documentation inheritance see Sametinger [Sam94). 

20.3.1 Documentation Abstraction 

In object-oriented programming, abstract classes are designed as parents from 
which subclasses may be derived. Abstract classes are not themselves suitable 
for instantiation. They are used to predefine certain structure and behavior 
which is then shared by a group of sibling subclasses. The subclasses add dif­
ferent variations of the missing pieces. Documentation has similar structure 
in many domains, e.g., manual pages and software life cycle documents. The 



www.manaraa.com

228 20. Documentation Reuse 

documentation of dbx/Oo/ 

'" '" .~ c '" OJ ;: '" 0 
E .;;; .2 c bO 2 '" c.. .2 .. IU Cii .. :c .§- '" E u: z 0 15. c ~ ::J c '" >. <J 0 e '" Vl 

.;; 
'" Vl 

:> '" .;;: 
< 0 c 

t.!.l 

'" '" OJ bO 
(5 :l 

z cc 
.E 
bO .;: 
>. c.. 
0 
U Fig. 20.3. Documen­

tation abstraction 

predefined structure for a certain group of documents guarantees uniform and 
consistent appearance. It is also possible to factor out common information 
for all the documents, making it easier to make modifications and keep infor­
mation consistent. The definition of sections of the abstract documentation 
serves as a guide to consistent documentation and helps identify incomplete 
parts. 

Fig. 20.3 provides another view of the documentation of dbxtool in terms of 
documentation abstraction. The documentation for "abstract manual page" 
defines twelve sections, of which six are designated for overriding (the sec­
tions 'Name', 'Synopsis', 'Description', 'Usage', 'Files' and 'Bugs'). If such a 
section is not overridden, as indicated in Fig. 20.3 for section 'Usage', then 
the inherited contents of the section should indicate that this information is 
missing and has to be provided. 

Tool support is useful in checking the completeness of documentation 
and-if incomplete-in spotting missing sections. The abstract documenta­
tion in Fig. 20.3 contains an additional section 'Copyright', which is auto­
matically included for all descriptions inherited therefrom. 

Fig. 20.4 shows what the abstract documentation for manual pages could 
look like. Whenever manual pages for a new tool are written, the presence of 
"-information not available-" (which is inherited from the abstract manual 
page) indicates that there are still missing parts, i.e., sections of the docu­
mentation to be written. 

20.3.2 Documentation Inclusions and References 

For documentation to be readable, information should not be spread over 
several files and/or directories. We need either the full documentation of a 
component with all inherited documentation included, or cross-references to 
the inherited information (with page numbers for printed documentation or 
links for on-line documentation). 



www.manaraa.com

abstract manual page 

Name 
-information not available-

Synopsis 
-information not available-

Availability 

20.3 Documentation Inheritance 229 

Refer to "Installing OS 4.1" on how to install optional software. 

Description 
-information not available-

Options 
no options available 

See also 
OS 4.1 Programmer's Guide 

Notes 
no notes 

Bugs 
-information not available-

Copyright 
by Horizon Aviation, 1997 

Fig. 20.4. Abstract manual page 

Fig. 20.5 shows part of the documentation of a class Collection. The sec­
tion 'Dynamic Creation and Object Copying' is inherited from class Object 
and can be read on page 34 of the documentation. In printed documentation 
references to page numbers avoid a waste of paper. For on-line documenta­
tion the inclusion of inherited sections may enhance readability and avoid the 
excessive use oflinks. Then too, it may make the document overly redundant. 

It is also useful to have a table of contents for a unit, where for each section 
(including the inherited ones) the corresponding unit and the page number 
(printed documentation) or a link (on-line documentation) are specified. 

20.3.3 Documentation Views 

The amount of available information is constantly growing. Information fil­
tering is important for efficient· access. Defining categories for documenta­
tion sections is a simple, yet powerful mechanism to provide various views 
of a document and to meet different documentation needs of various read­
ers. Fig. 20.6 shows what information might be provided to a casual user of 
dbxtool. A professional user would get the other sections as well. 

When documenting source code, a useful control mechanism is the distinc­
tion among private, protected and public sections, as is done in the program-



www.manaraa.com

230 20. Documentation Reuse 

Class Collection 
base class for collections of objects 

Collection Types 
The subclasses of Collection implement different ways of storing 
and accessing the objects .... 

Dynamic Creation and Object Copying (class Object) 
see page 34. 

Fig. 20.5. Sample (print) output with references 

ming language C++. This distinction determines access rights for clients, 
heirs and friends of classes. Public sections can be read by everyone and are 
devoted to describing how to use a class. Protected sections contain more de­
tailed information that is needed to build subclasses. Finally, private sections 
contain additional implementation details that are exclusively intended for 
development and maintenance personnel (see Fig. 20.7). 

The whole documentation of a class (or a method) is visible only for 
friends. Reusers who build subclasses (heirs) see only a subset of this doc­
umentation; they do not have access to private sections, which typically 
describe implementation details ('Implementation' sections in Fig. 20.7). 
Clients' access is further restricted to public sections, which contain general 
interface descriptions ('Description', 'Layout', 'Method Descriptions' and 'In­
terfaces' in Fig. 20.7). Similarly to the source code, private sections of the 
documentation are not inherited; i.e., private documentation of the class Rect­
angle does not become part of the documentation of any subclass thereof. 

dbxlO(}/ 

dbx 

dcbuggcrs 

abstract 

documentation of dbxroo/ for ca ual u er 

t t ttt t 

manual page L..-..1-...L..--L.......,IL-..I-_______ =--L..--L--JL--.l---l...~--J 

C <r. 0 '" ~ .E ... '" '" '" 1£ -a (5 " 
Cl) 

E z cc ·c 
c ~ >. 
e 0. en 0 .;; U 
c 
III 

Fig. 20.6. A view of user documentation 



www.manaraa.com

cIa sc : 

Rectangle 

Shape 

documentation of cia Rectangle for ... 

t t tttt ttttttttt 
t {' ttttttttttttttt 

- - r-
C C 
0 .g .::;; 
~ ~ 
c c 
<.) 0) 

E E 
<.) 0) 

"9 
E 

"9 E - -
c 

VI 
c 

Vl 
c 

Vl c 
VI .2 .2 0 .2 

<.) 
<.) ., <.) 

:§ <.) .S:! <.) 
., 

.g ~ .~ .g u .~ u 
~ .9 ~ .~ .g ti ~ ... 

u ~ u ~ 0) u 
~ Vl 0) Vl ., VI ., 

«i Vl <.) 
<.) C «I <.) C «I <.) .5 0) .5 «I 
A U A U A U A U 

c ~ eo 0) I 0) I 0) 
c > «i 0 (5 "5 ~ 
0 

p,:: 
"0 "0 

"0 0 
-5 0 

0 -5 -5 <.) 

E <.) 
0) 

~ E 

Fig. 20.7. Views for system documentation 

20.3.4 Documentation Hierarchies 

20.4 Summary 231 

clients 

heirs 

friends 

Documentation inheritance allows the definition of a hierarchy of documen­
tation outlines for different kinds of components, as is depicted in Fig. 20.S. 
This guarantees a consistent documentation structure for all components, 
with adaptations according to the type of a component. 

If a component is reused for the development of a software system, the 
component's documentation becomes part of the documentation of the entire 
system. Any adaptations made to the component have to be clearly docu­
mented as well. Ideally, this is done by documentation inheritance [Sam94] 
without any direct modifications to the original documentation. 

20.4 Summary 

In this chapter we have demonstrated how documentation inheritance can 
be used for systematic reuse of documentation. The concepts discussed can 
be applied to pure documentation (i.e., documentation without any source 



www.manaraa.com

232 20. Documentation Reuse 

abstract 
documentation 

Fig. 20.8. Documentation hierarchy 

code) to system documentation of conventional software systems, as well as 
to system documentation of object-oriented software systems. 

The examples used in the previous sections have given a glimpse into 
how documentation can be reused in the manual page domain, i.e., in user 
documentation of tools and applications. Documenting an object-oriented 
software system provides the most obvious applicability of documentation 
reuse. If system documentation and source code are similarly structured, 
documentation reuse is a matter of fact. 

The goal is to have software systems built from reusable components and 
to have their documentation built upon these components' documentation. 
Even though we are still a long way from that scenario, literate program­
ming and explicit documentation reuse can help in improving the quality of 
software systems and in increasing the productivity of software engineers. 

Tool support will be essential for the application of documentation reuse. 
So far only prototype implementations have been developed (see Childs and 
Sametinger [CS96a]). 



www.manaraa.com

Part V 

Closing 



www.manaraa.com

21. Conclusion 

Contents 

21.1 A Paradigm Shift .................................... 235 
21.1.1 Software Components ............................ 236 
21.1.2 Software Reuse ................................. 237 

21.2 Limits of Component Reuse ......................... 237 
21.3 Prospects ............................................ 239 

There is still a long way to go until systematic reuse of software components, 
especially beyond company boundaries, will be a matter of fact. It requires 
more research in various areas as well as commitment from companies to 
systematic reuse. 

In previous chapters we have covered aspects of software reuse, software 
components, software engineering and software documentation. In this final 
chapter we provide some concluding remarks. Thoughts on a paradigm shift 
that is caused by software components and software reuse are presented in 
Section 21.1. In Sections 21.2 and 21.3 we discuss limits and prospects of 
component reuse, respectively. 

21.1 A Paradigm Shift 

Scientists working in a certain field usually accept a set of rules, con­
cepts and procedures. They conduct science in accordance with this set, 
which is called a paradigm. People working in a certain area try to ob­
tain solutions, but they do not change these rules, concepts and procedures. 
However, unexpected discoveries may prove inconsistent with the prevailing 
paradigm. This may trigger a scientific revolution. A new paradigm emerges 
(paradigm shift) and normal scientific activity can be resumed under the new 
paradigm [Kuh70, Moo89]. Paradigm shifts, although rare, do occur, espe­
cially in natural sciences. 

Paradigm shifts in software engineering involve the development of new 
ideas, new concepts, new methods, and also new problems [Fra94b]. A new 
paradigm gives deeper understanding of phenomena and provides a way of 
doing software engineering better and more efficiently. We argue that both 



www.manaraa.com

236 21. Conclusion 

software reuse and software components contribute to a paradigm shift in 
software engineering. 

21.1.1 Software Components 

Building software systems from components produces a major change in the 
way these systems work and in the way these systems are built. Procedure­
oriented programming allows the definition of abstract actions that match 
the granularity of the tasks to be modeled; a software system is a sequence of 
actions. Wegner shows that software systems that are composed of collections 
of interacting entities can be interactive, open, distributed and better suited 
for change [Weg93]. 

The evolution of software engineering has not made a quantum leap from 
procedures to objects, but rather rather progressed in incremental steps. At 
the beginning algorithms were implemented with machine or assembler lan­
guages. High-level programming languages eased this task by providing pro­
cedures and functions. Abstract data structures, abstract data types, and 
finally objects have been important further improvements towards compo­
nents. 

We have defined components as arbitrary reusable entities including 
macros and functions. This broad definition avoids limitations of unavailabil­
ity of component technology. Further research is necessary to make the next 
step beyond object-oriented technology. Then, components will most likely 
have all the properties that are shown for objects in Table 8.1 on page 109. 
However, components should have less coupling than objects and should be 
less dependent on software systems, i.e., not be inherent parts of systems like 
objects. 

Wegner defines a component-based system as a system that has compo­
nents as primitive description units and communication between components 
as computation units. "Components have an interface that specifies the inter­
actions (messages) meaningful for that component. Programs are collections 
of interacting components and computations are patterns of message com­
munication" [Weg93]. 

Component-based systems can better reflect properties that are needed in 
order to model large software systems. The software crisis is in part due to the 
fact that it is not possible to model large software systems as algorithms. Al­
gorithmic programming is programming-in-the-small, whereas building soft­
ware from interacting components is programming-in-the-Iarge [Weg96]. Not 
the largeness is the main problem, but the required interactiveness, openness 
and distribution of today's software systems. 

The behavior of software systems composed of objects or components can­
not be modeled by algorithms which transform inputs to outputs independent 
of time [Weg96]. A combination of algorithms yields another, more complex 
algorithm that can be specified by means of an input/output function. Com­
posing interactive components yields software systems whose behavior cannot 



www.manaraa.com

21.2 Limits of Component Reuse 237 

be fully specified by the behavior of their components. Wegner shows that 
interactive systems cannot be modeled by reducible, compositional or com­
plete formal systems [Weg96]. This is similar to G6del's discovery that it is 
not possible to completely describe the behavior of integers by logic. Interac­
tion machines are inherently incomplete and cannot be described with Turing 
machines. 

Turing machines are the reference model for algorithmic computation. 
They are simple thought models that execute state transition instructions 
and transform finite sequences of input symbols to sequences of output sym­
bols. Turing machines define the transformation power of computable func­
tions. They do not accept any input from the external world during their 
computations. Thus passage of external time or interaction cannot be mod­
eled. However, Turing machines can be extended to model interaction; the 
extensions are called interaction machines. Turing machines themselves lose 
their status as the most powerful computing mechanism [Weg96]. 

21.1.2 Software Reuse 

Frakes argues that systematic software reuse amounts to a paradigm shift 
in software engineering [Fra94b]. Many new key activities for software en­
gineering are introduced through software reuse as described in this book. 
Examples are domain analysis, development for jwith reuse, reuse measure­
ment, reuse certification, reuse classification and repository compilation. All 
these activities have spawned new questions and new research directions. 

With systematic reuse, software engineering shifts from a discipline con­
cerned with the construction of single systems to a discipline concerned with 
constructing related systems that share many commonalties and vary in reg­
ular and identifiable ways [Fra94b]. 

Some may think that it is extravagant to speak of a paradigm shift in 
software engineering. We argue that software reuse and software components 
provoke so many changes and innovations that this term is justified. For ex­
ample, there has long been a discussion on whether the (simple) step from 
procedure-oriented to object-oriented programming is a revolution or an evo­
lution. Many argue that object-oriented programming provides just another 
means of abstraction that can be used in certain situations, but often the 
old concepts are sufficient. We favor the other argument that object-oriented 
programming has brought a radical change in the way we design software sys­
tems, the shift already from algorithmic thinking to the creation of interactive 
components. 

21.2 Limits of Component Reuse 

Prevailing problems of component reuse emerge on examination of the steps 
involved in reusing a component, like classification, retrieval, comprehension, 



www.manaraa.com

238 21. Conclusion 

adaptation, integration, certification and generalization. Currently most re­
search is being done in these areas. The most challenging aspect is component 
integration. Component coordination, communication and interoperation are 
important terms in this context (see Chapters 6 to 9). 

We are still far from the scenario of composing most software systems 
from existing components. Many questions are still unanswered, and much 
research has to be done especially in the composability and interoperability of 
components. However, even if we somehow attain this goal, we will not get rid 
of all problems. It remains to be seen whether we can raise the abstraction 
levels of components and at the same time achieve high-performance sys­
tems by using these components. Performance is one of the key hindrances to 
clean software composition. Whenever abstraction levels have risen, lack of 
performance has resulted as well and efforts were made to circumvent these 
abstractions. This started decades earlier when compiler-generated code was 
not fast enough to compete with hand-written assembler code. At that time 
it was not unusual to write parts of systems that were crucial for the per­
formance in assembler code. Fortunately, hardware has become fast enough 
that this is seldom necessary any longer. However, at almost any given time 
we have had abstraction mechanisms that drove our machines to their lim­
its. Object-oriented programming, especially with Smalltalk, has long been 
unacceptable for production systems due to low performance. Today even 
interpreted Smalltalk systems are fast enough to be used in a wide range of 
applications. Communicating over a network or even among processes on a 
single machine slows down processing, but designing systems as cooperating 
processes has many advantages in flexibility, reliability and extensibility, and 
for many application domains the communication overhead is not a crucial 
point. 

The question is whether we will be able to compose software systems 
out of prefabricated software components or whether we will fail because for 
many applications the overhead will subvert reasonably fast software sys­
tems? "Small is beautiful." Rethinking a problem may yield better solutions 
than just putting together complex components and summing up the unnec­
essary burden of multiple computations and needless calculations. 

We have to accept a certain amount of overhead in order to increase 
productivity, but there are limits beyond which we obtain clumsy, oversized 
and probably useless systems. The goal of software composition is not just to 
effectively plug together as many components as possible; it is also a challenge 
to find the right size and functionality of components to justify a compromise 
between productivity and system performance. 

Black-box reuse is another crucial point. For the interchangeability of 
components, it is necessary to refrain from relying on any internals of com­
ponents. While we may want to avoid white-box reuse, glass-box reuse may be 
an alternative in some situations. Influencing the performance characteristics 



www.manaraa.com

21.3 Prospects 239 

of components by parameterization may help in many situations to reduce 
performance overhead and to increase the components' reusability. 

Kiczales introduces the term "mapping dilemma" [Kic94). This means 
that even though certain implementation issues of a component should be 
hidden in a black box, they affect the performance based on the client's use 
patterns. There are many examples of such dilemmas. A spreadsheet program 
could be composed of many (e.g., 100 times 100) components (in fact 10,000 
instantiations of one component) that are fully capable of text editing and 
window display, etc., but it will not work efficiently that way. Even if it 
works at all, it will take another hundred years until hardware is fast enough 
to cope with such a design. Virtual memory is another example mentioned by 
Kiczales [Kic94). Different page replacement policies are possible. Depending 
on the application, one policy or another may be an advantage or a big 
disadvantage. If a graphics editor displays all the graphical objects on the 
screen there should definitely not be a page fault in the process. 

Biggerstaff argues that "formal representation options available today for 
expressing reusable components-notably, programming languages-are ex­
cessively concrete," which "imposes a built-in barrier to widespread and high 
payoff reuse of those components" [Big93). A key factor for reuse failure is 
the lack of abstraction of reusable components. This argument goes against 
purely compositional reuse and suggests a combination with generative reuse 
as described by Neighbors [Nei89). Possible components in today's program­
ming languages are macros, classes, generics and templates. These compo­
nents are concrete; i.e., implementation details are introduced too early. 
Reuse has to escape the bounds of concrete representations, which, according 
to Biggerstaff, requires a mixture of generation and composition [Big93). We 
argue that generative reuse will be useful in certain domains, but the limits 
of component reuse can be surpassed only by higher abstractions that go be­
yond programming languages. New programming languages are still needed 
to build these high-level components. Significant reuse benefits will be reaped 
at the level of interactive, executable components. 

21.3 Prospects 

Increased reuse of software components represents a different way to build 
software systems. Not only does reuse provide a more productive way to 
create new software, systems composed of components also facilitate modifi­
cations to these systems. The goal must bei to evolve software. It has long 
become clear that today's and definitely tomorrow's software systems are too 
complex and too expensive to be built according to predefined requirements 
and specifications. Ever-changing requirements have to be taken into consid­
eration from the very start of a software project. Composing systems from 
components should allow us to add, remove and exchange parts of systems 



www.manaraa.com

240 21. Conclusion 

without the need to completely replace systems after a few years. This will 
help to keep old software up-to-date by integrating new components. 

We have to avoid legacy software, i.e., software systems being antique and 
unmaintainable, but indispensable for companies like the air traffic control 
system mentioned in Chapter 1. Air traffic is still booming and we can bet 
that requirements for air traffic control will considerably change (evolve) over 
the next decades. We cannot build systems that have today's requirements 
hard-wired in them and expect not to have troubles in the future. Building 
clean architectures and composing software from components will help in 
adapting to ever changing requirements even if the components of the system 
are never reused in another system. 

The landscape of software systems will constantly change from closed 
monolithic systems to open systems composed of reusable components. 



www.manaraa.com

References 

[And91] G.R. Andrews. Paradigms for process interaction in distributed pro­
grams. ACM Computing Surveys, 23:49-90, June 1991. 

[A090] Adrian Avenarius and Siegfried Oppermann. FWeb: A literate program­
ming system for Fortran 8X. ACM SIGPLAN Notices, 25(1):52-58, Jan­
uary 1990. 

[Api95] Steve Apiki. OLE controls from the ground up. Byte, pages 169-170, 
June 1995. 

[App95] Apple Computer Inc. OpenDoc: Frequently asked questions, 1995. 
http://opendoc.appie.com/info/faq.html. 

[Ara94a] Guillermo Arango. Domain analysis. In Marciniak [Mar94], pages 424-
434. 1994. 

[Ara94b] Guillermo Arango. Domain analysis methods. In Schiifer et al. [SPM94], 
chapter 2, pages 17-49. 1994. 

[Bau93] Dorothea A. Bauer. A reusable parts center. IBM Systems Journal, 
32( 4):620-624, 1993. 

[BB91] Bruce H. Barnes and Terry B. Bollinger. Making reuse cost-effective. 
IEEE Software, 8:13-24, January 1991. 

[BBC+94] Paula Bell, Christine Browning, Saul Carliner, Mary Lou Nohr, and 
Judy Williams. Documentation. In Marciniak [Mar94], pages 407-419. 
1994. 

[BD93] Alan Burns and Geoff Davies. Concurrent Programming. Addison­
Wesley, 1993. 

[BEK+96] Tim Bardo, Dave Elliot, Tony Krysak, Mike Morgan, Rebecca Shuey, 
and Will Tracz. Core: A product line success story. Crosstalk: The 
Journal of Defense Software Engineering, 9(3):24-28, March 1996. 

[Big93] Ted J. Biggerstaff. The limits of concrete component reuse. In WISR 6 
[WIS93]. 1993. 

[BKZ93] Rajiv D. Banker, Robert J. Kauffman, and D. Zweig. Repositoryeval­
uation of software reuse. IEEE Transactions on Software Engineering, 
19( 4):379-389, April 1993. 

[Blu92] Bruce I. Blum. Software Engineering: A Holistic View. Oxford Univer­
sity Press, 1992. 

[BM92] Elizabeth L. Burd and John A. McDermid. Guiding reuse with risk 
assessments. Technical Report YCS-92-183, University of York, 1992. 

[B092] Don Batory and Sean O'Malley. The design and implementation of hier­
archical software systems with reusable components. A CM Transactions 
on Software Engineering and Methodology, 1(4):355-398, October 1992. 

[Boe81] Barry W. Boehm. Software Engineering Economics. Prentice Hall, 1981. 
[Boe88] Barry W. Boehm. A spiral model of software development and enhance­

ment. IEEE Software, 25(5):61-72, May 1988. 



www.manaraa.com

242 References 

[Boe91] Barry W. Boehm. Software risk management: Principles and practice. 
IEEE Software, pages 32-41, January 1991. 

[Boe96] Barry W. Boehm. Software reuse economics. In Sitaraman [Sit96], 
page 20. 1996. 

[Bo087] Grady Booch. Software Components with Ada: Structures, Tools, and 
Subsystems. Benjamin/Cummings Publishing Company, Inc., Menlo 
Park, CA, 1987. 

[BP89a] Ted J. Biggerstaff and Alan J. Perlis, editors. Software Reusability, 
Vol. I: Concepts and Models. ACM Press, 1989. 

[BP89b] Ted J. Biggerstaff and. Alan J. Perlis, editors. Software Reusability, 
Vol. II: Applications and Experience. ACM Press, 1989. 

[BR88] Victor R. Basili and Hans Dieter Rombach. Towards a comprehensive 
framework for reuse: A reuse-enabling software evolution environment. 
Technical Report CS-TR-2158, University of Maryland, December 1988. 

[BR89] Ted J. Biggerstaff and Charles Richter. Reusability framework, assess­
ment, and directions. In Biggerstaff and Perlis [BP89a], pages 1-17. 
1989. 

[BR92] F. Bott and M. Ratcliffe. Reuse and design. In Hall [HaI92], pages 35-51. 
1992. 

[Bra94a] 

[Bra94b] 

[Bra94c] 

[Bra94d] 

[Br075] 
[BST89] 

[CC94] 

[Che89] 

[Chi91] 

[CL95] 

[Cle88] 

[Coa92] 

[Co094] 

[CS96a] 

Christine L. Braun. NATO standard for the development of reusable 
software components, volume 1 (of 3 documents), 1994. 
http://wuarchive.wustl.edu/languages/ada/docs/nato.ru/(Public Ada Library). 

Christine L. Braun. NATO standard for management of a reusable soft­
ware component library, volume 2 (of 3 documents), 1994. 
http://wuarchive.wustl.edu/languages/ada/docs/nato.ru/(Public Ada Library). 

Christine L. Braun. NATO standard for software reuse procedures, vol­
ume 3 (of 3 documents), 1994. 
http://wuarchive.wustl.edu/languages/ada/docs/nato.ru/(Public Ada Library). 

Christine L. Braun. Reuse. In Marciniak [Mar94], pages 1055-1069. 
1994. 
F. P. Brooks, Jr. The Mythical Man-Month. Addison-Wesley, 1975. 
Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Program­
ming languages for distributed computing systems. ACM Computing 
Surveys, 21(3):261-322, September 1989. 
Don Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin. 
The Gen Voca model of software-system generators. IEEE Software, 
11(5):89-94, September 1994. 
Dave Card and Ed Comer. Why do so many reuse programs fail? IEEE 
Software, 11(5):114(2), September 1994. 
Thomas E. Cheatham, Jr. Reusability through program transformations. 
In Biggerstaff and Perlis [BP89a], pages 321-335. 1989. 
Bart Childs. Literate programming, a practitioner's view. TUGboat, 
Proceedings of the 1991 Annual Meeting, 12(3):1001-1008, 1991. 
Marhall P. Cline and Greg A. Lomow. C++ FAQs: Frequently Asked 
Questions. Addison-Wesley, 1995. 
J. Cleaveland. Building application generators. IEEE Software, 5(6):25-
33, July 1988. 
Peter Coad. Object-oriented patterns. Communications of the ACM, 
35(9):152-159, 1992. 
Jack Cooper. Reuse-the business implications. In Marciniak [Mar94]' 
pages 1071-1077. 1994. 
Bart Childs and Johannes Sametinger. Literate programming and doc­
umentation reuse. In Sitaraman [Sit96], pages 205-214. 1996. 



www.manaraa.com

References 243 

[CS96b] Bart Childs and Johannes Sametinger. Reuse measurement with line 
and word runs. TOOLS Pacific '96, November 1996. 

[CS97] Bart Childs and Johannes Sametinger. Analysis of literate programs 
from the viewpoint of reuse. Software-Concepts & Tools, 18(1), 1997. 

[CSPK92] S. Cohen, J. Stanley, Jr, A. Peterson, and R. Krut, Jr. Application of 
feature-oriented domain analysis to the army movement control domain. 
Technical Report CMU /SEI-91-TR-28, Software Engineering Institute, 
Carnegie Mellon University, June 1992. 

[Dew79] M. Dewey. Decimal Classification and Relative Index. Forest Press Inc., 
19th edition, 1979. 

[DF93] Paolino Di Felice. Reusability of mathematical software: A contribu­
tion. IEEE Transactions on Software Engineering, 19(8):835-843, Au­
gust 1993. 

[DFSS89] Ed Dubinsky, Stefan Freudenberger, Edith Schonberg, and J. T. 

[DJ95] 

[DK93] 

[dM95] 

[DS94] 

[DvK87] 

[DW92] 

[E1l96] 

[Faf94] 

[FI94] 

[FP94] 

[Fra94a] 

[Fra94b] 

[Fra95a] 

[Fra95b] 
[Fre87a] 

[Fre87b] 

Schwartz. Reusability of design for large software systems: An experi­
ment with the SETL optimizer. In Biggerstaff and Perlis [BP89a], pages 
275-293. 1989. 
Herbert L. Dershem and Michael J. Jipping. Programming Languages: 
Structures and Models. PWS Publishing Company, 2nd edition, 1995. 
Michael F. Dunn and John C. Knight. Certification of reusable software 
parts. Technical Report CS-93-41, University of Virginia, August 31" 
1993. 
Vicki de Mey. Visual composition of software applications. In Nierstrasz 
and Tsichritzis [NT95], pages 275-303. 1995. 
Gail Dutton and Dave Sims. Patterns in 00 design and code could 
improve reuse. IEEE Software, 11:101, May 1994. 
E.M. Dusink and J. van Katwijk. Reflections on reusable software and 
software components. In Tafvelin [Taf87]' pages 113-126. 1987. 
Ted Davis and Roger Williams. Toward a reuse maturity model. In 
WISR 5 [WIS92]. 1992. 
Michael Elliot. Implementing 0-0 design concepts with literate program­
ming. In Mitchell et al. [MNM96], pages 29-43. 1996. 
Danielle Fafchamps. Organizational factors and reuse. IEEE Software, 
11(5):31-41, September 1994. 
William B. Frakes and Sadahiro Isoda. Success factors of systematic 
reuse. IEEE Software, 11(5):15(5), September 1994. 
William B. Frakes and Thomas P. Pole. An empirical study of represen­
tation methods for reusable software components. IEEE Transactions 
on Software Engineering, 20(8):617-630, August 1994. 
William B. Frakes, editor. 3rd International Conference on Software 
Reuse, Rio de Janeiro, Brazil, November 1-4, 1994. IEEE Computer 
Society Press. 
William B. Frakes. Systematic software reuse: A paradigm shift. In 3rd 
International Conference on Software Reuse [Fra94a], pages 2-3. 1994. 
Frame. Frame Developer's Kit: Programmer's Guide. Frame Technology, 
Release 5, 1995. 
Frame. Using FrameMaker. Frame Technology, Release 5, 1995. 
Peter Freeman. Reusable software engineering concepts and research 
directions. In Tutorial: Software Reusability [Fre87b], pages 10-23. 1983. 
Peter Freeman, editor. Tutorial: Software Reusability. IEEE Computer 
Society Press, 1987. 



www.manaraa.com

244 References 

[GA095] David Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or 
why it's hard to build systems out of existing parts. In ICSE 17, pages 
179-185. Seattle, WA, April 23-30, 1995. 1995. 

[Gar95] David Garlan. Research directions in software architecture. ACM Com­
puting Surveys, 27(2):257-261, June 1995. 

[Ge93] Erich Gamma and et al. Design patterns: Abstraction and reuse of 
object-oriented design. In European Conference on Object-Oriented Pro­
gramming (ECOOP). Kaiserslautern, Germany, 1993. 

[GFW94] Martin L. Griss, John Favaro, and Paul Walton. Managerial and orga­
nizational issues- starting and running a software reuse program. In 
Schiifer et al. [SPM94], chapter 3, pages 51-78. 1994. 

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De­
sign Patterns: Elements of Reusable Object-Oriented Software. Addison­
Wesley, 1995. 

[GM95] James Gosling and Henry McGilton. The Java programming language, 
1995. OOPSLA '95 Thtorial Notes, Austin, TX. 

[GR95] Adele Goldberg and Kenneth S. Rubin. Succeeding with Objects: Deci­
sion Frameworks for Project Management. Addison-Wesley, 1995. 

[Gri93] Martin L. Griss. Software reuse: from library to factory. IBM Systems 
Journal, 32(4):548-566, 1993. 

[GS94] David Garlan and Mary Shaw. An introduction to software architecture. 
Technical Report CMU/SEI-94-TR-21, Software Engineering Institute, 
Carnegie Mellon University, 1994. 

[Hal92] P.A.V. Hall, editor. Software Reuse and Reverse Engineering in Practice. 
Chapman & Hall, 1992. 

[HC91] James W. Hooper and Rowena O. Chester. Software reuse: Guidelines 
and Methods. Plenum Press, New York, 1991. 

[HCK+90] James A. Hess, Sholom G. Cohen, Kyo C. Kang, A. Spencer Peterson, 
and William E. Novak. Feature-oriented domain analysis (FODA) feasi­
bility study. Technical Report CMU /EI-90-TR-21, Software Engineering 
Institute, Carnegie Mellon University, 1990. 

[HKN85] E. Horowitz, A. Kemper, and B. Narasimhan. A survey of application 
generators. IEEE Software, 2(1):40-54, January 1985. 

[HoI92] Joseph Eugene Hollingsworth. Software Component Design-for-Reuse: 
A Language-Independent Discipline Applied to Ada. PhD thesis, Ohio 
State University, 1992. 

[Hor93] Ken Horner. More to reuse than objects. Software Magazine, 13(7):6(2), 
May 1993. 

[HP88] Robert Holibaugh and J. Perry. Phase I testbed description: Require­
ments and selection guidelines. Technical Report CMU /SEI-88-TR-13, 
Software Engineering Institute, Carnegie Mellon University, September 
1988. 

[HS93] Brian Henderson-Sellers. The economics of reusing library classes. Jour-
nal of Object-Oriented Programming, 6(4):43-50, July-August 1993. 

[Hub94] Theresa R. Huber. Reducing business and legal risks in software reuse 
libraries. In Frakes [Fra94a], pages 110-117. 1994. 

[ICS94] ICSE 16: 16th International Conference on Software Engineering, Sor­
rento, Italy, May 16-21, 1994. 

[JaI94] Pankaj Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, 
1994. 

[Joc95] Alan Joch. How software doesn't work. Byte, 20(12):49-60, December 
1995. 



www.manaraa.com

References 245 

(Jon84] Capers T. Jones. Reusability in programming: A survey of the state 
of the art. IEEE 'I'ransactions on Software Engineering, 10(5):488~494, 
September 1984. 

(Jon94] Capers Jones. Economics of software reuse. Computer, 27:106~107, July 
1994. 

(J0094] Rebecca Joos. Software reuse at Motorola. IEEE Software, 11(5):42(6), 
September 1994. 

[Kai96] J. Bradford Kain. Components: The basics: Enabling an application or 
system to be the sum of its parts. Object Magazine, 6(2):64~69, April 
1996. 

[Kan87] Kyo C. Kang. A reuse-based software development methodology. In 
Workshop on Software Reuse. Boulder, CO, October 1987. 

[Kan89] Kyo C. Kang. Features analysis: An approach to domain analysis. In 
J. Baldo and Christine L. Braun, editors, Reuse in Practice Workshop. 
Pittsburgh, Penn., July 1989. 

[Kar95] Even-Andre Karlsson, editor. Software Reuse: A Holistic Approach. John 
Wiley & Sons, 1995. 

[Ker84] Brian Kernighan. The Unix system and software reusability. IEEE 
'I'ransactions on Software Engineering, SE-1O(5):513~, 1984. 

[KH91] Philip Koltun and Anita Hudson. A reuse maturity model. In WISR 4 
[WIS91]. 1991. 

[Kic94] Gregor Kiczales. Why are black boxes so hard to reuse? Towards a new 
model of abstraction in the engineering of software. In Invited Talk at 
OOPSLA '94 (Portland, OR) and ICSE-17 (Seattle, WA), 1994. 

[KL93] Donald E. Knuth and Silvio Levy. The CWeb System of Structured 
Documentation, Version 3.0. Addison-Wesley, 1993. 

[Knu73a] Donald E. Knuth. The Art of Computer Programming, Vol. I: Funda­
mental Algorithms. Addison-Wesley, 1973. 

[Knu73b] Donald E. Knuth. The Art of Computer Programming, Vol. II: Seminu­
merical Algorithms. Addison-Wesley, 1973. 

[Knu73c] Donald E. Knuth. The Art of Computer Programming, Vol. III: Sorting 
and Searching. Addison-Wesley, 1973. 

[Knu84] Donald E. Knuth. Literate programming. IEEE Computer Journal, 
27(2):97~111, 1984. 

[Knu86a] Donald E. Knuth. The TpjX Book, volume A of Computers & Typeset­
ting. Addison-Wesley, 1986. 

[Knu86b] Donald E. Knuth. TpjX: The Program, volume B of Computers & Type­
setting. Addison-Wesley, 1986. 

[Knu86c] Donald E. Knuth. The MetaFont Book, volume C of Computers & Type­
setting. Addison-Wesley, 1986. 

[Knu86d] Donald E. Knuth. MetaFont: The Program, volume D of Computers & 
Typesetting. Addison-Wesley, 1986. 

[Knu92] Donald E. Knuth. Literate Programming. Leland Stanford Junior Uni­
versity, 1992. 

[Kon95] Dimitri Konstantas. Interoperation of object-oriented applications. In 
Nierstrasz and Tsichritzis [NT95], pages 69~95. 1995. 

[Kr090] John Krommes. FWeb (Krommes) vs. FWeb (Avenarius and Opper­
mann). TpjXhax, 90(19), 1990. 

[Kru92] Charles W. Krueger. Software reuse. ACM Computing Surveys, 24:131~ 
83, June 1992. 

[Kuh70] Thomas S. Kuhn. The Structure of Scientific Revolutions. Chicago 
University Press, 2nd edition, 1970. 



www.manaraa.com

246 References 

[Lev86] L. S. Levy. A metaprogramming method and its economic justification. 

[Lev93] 

[LI93] 

[Lib90] 

[Lim94] 

[Lim95] 
[MaI93] 
[Mar90] 

[Mar94] 

[MB87] 

[McI76] 

[MDK96] 

[Mer94] 

[Met94] 

[Mey88] 

[Mey92] 

[Mey94] 

[Mic93a] 

[Mic93b] 

[Mic93c] 

[Min85] 
[MMM95] 

[MNM96] 

[Moo89] 

IEEE Transactions on Software Engineering, 12(2):272-277, February 
1986. 
Silvio Levy. Literate programming and CWeb. Journal on Computer 
Language, 10(1):67-70, January 1993. 
Mitchell D. Lubars and Neil Iscoe. Frameworks versus libraries: A di­
chotomy of reuse strategies. In WISR 6 [WIS93]. 1993. 
Don Libes. expect: Curing those uncontrollable fits of interaction. In 
Summer 1990 USENIX Conference. Anaheim, CA, June 1990. 
Wayne C. Lim. Effects of reuse on quality, productivity, and economics. 
IEEE Software, 11(5):23(8), September 1994. 
Wayne C. Lim. Managing Software Reuse. Prentice Hall, 1995. 
Ruth A. Malan. Motivating software reuse. In WISR 6 [WIS93]. 1993. 
J. Martin. Information Enginnering Book III: Design and Construction. 
Prentice Hall, 1990. 
John J. Marciniak, editor. Encyclopedia of Software Engineering. John 
Wiley & Sons, 1994. 
J. Margono and E.V. Berard. A modified Booch's taxonomy for Ada 
generic data-structure components and their implementation. In Tafvelin 
[Taf87], pages 61-74. 1987. 
M. D. McIlroy. Mass produced software components. In J.M. Buxton, 
P. Naur, and B. Randell, editors, Software Engineering Concepts and 
Techniques, pages 88-98, 1968 NATO Conference on Software Engineer­
ing, 1976. 1968. 
John D. McGregor, Jim Doble, and Asha Keddy. A pattern for reuse: Let 
architectural reuse guide component reuse. Object Magazine, 6(2):38-47, 
April 1996. 
Steven Merrit. Reuse library. In Marciniak [Mar94], pages 1069-1071. 
1994. 
Meta Group. Component Software. Meta Group, Inc., December 5 1994. 
White Paper. 
Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 
1988. 
Bertrand Meyer. Eiffel: The Language. Prentice Hall, second printing 
edition, 1992. 
Bertrand Meyer. Reusable Software: The Base object-oriented component 
libraries. Prentice Hall, 1994. 
Microsoft. VisualBasic: Professional Features, Book 1, V3. O. Microsoft 
Corporation, 1993. 
Microsoft. VisualBasic: Professional Features, Book 2, V3.0. Microsoft 
Corporation, 1993. 
Microsoft. VisualBasic: Programmer's Guide, V3.0. Microsoft Corpora­
tion, 1993. 
Marvin Minsky. The Society of Mind. Simon and Schuster, 1985. 
Hafedh Mili, Fatma Mili, and Ali Mili. Reusing software: Issues 
and research directions. IEEE Transactions on Software Engineering, 
21(6):528-562, June 1995. 
Richard Mitchell, Jean-Marc Nerson, and Bertrand Meyer, editors. 
TOOLS 19: Technology of Object-Oriented Languages and Systems, 
Paris, France, 1996. Prentice Hall. 
Walter Moore. Schrodinger: Life and Thought. Cambridge University 
Press, 1989. 



www.manaraa.com

[Moo94] 

[Mor91] 

[MR90] 

[Mye86] 

[MZ95] 

[Nav92] 

[Nav93] 

[ND95] 

[Nei89] 

[Nie95] 

[NM95] 

[NT95] 

[NY90] 

[Ous90] 

[Ous94] 
[PC91] 

[Pet96] 

[PF87] 

[PF93j 

[Pit93] 

[Pom84] 

[Pou92] 
[Pou95] 

[Pre92] 

References 247 

James W. Moore. Debate on software reuse libraries. In Frakes [Fra94a], 
pages 203-204. 1994. 
John S. Morrison. The emerging market in adaptable and reusable soft­
ware components-impact on system engineering and enterprise integra­
tion. In WISR 4 [WIS91]. 1991. 
Roland T. Mittermeir and Wilhelm Rossak. Reusability. In Ng and Yeh 
[NY90], chapter 7, pages 205-235. 1990. 
Brad A. Myers. Visual programming, programming by example, and 
program visualization: A taxonomy. In CHI '86, Human Factors in 
Computing Systems, pages 59-66. 1986. 
J. Thomas Mowbray and Ron Zahavi. The Essential Corba: Systems 
Integration Using Distributed Objects. John Wiley & Sons, 1995. 
James J. Navarro. Organization design for software reuse. In WISR 5 
[WIS92]. 1992. 
James J. Navarro. Organization design-based software reuse adoption 
strategy. In WISR 6 [WIS93]. 1993. 
Oscar Nierstrasz and Laurent Dami. Component-oriented software tech­
nology. In Nierstrasz and Tsichritzis [NT95], pages 3-28. 1995. 
James M. Neighbors. Draco: A method for engineering reusable software 
systems. In Biggerstaff and Perlis [BP89a], pages 295-319. 1989. 
Oscar Nierstrasz. Research topics in software composition. In A. Napoli, 
editor, LMO '95: Langages et Modeles d Objets, pages 193-204. Nancy, 
France, October 12-13 1995. 
Oscar Nierstrasz and Theo Dirk Meijler. Research directions in software 
composition. ACM Computing Surveys, 27(2):262-264, June 1995. 
Oscar Nierstrasz and Dennis Tsichritzis, editors. Object-Oriented Soft­
ware Composition. Prentice Hall International, December 1995. 
Peter A. Ng and Raymond T. Yeh, editors. Modern Software Engineer­
ing: Foundations and Current Perspectives. Van Nostrand Reinhold, 
1990. 
John K. Ousterhout. Tel: An embeddable command language. In Winter 
USENIX Conference, 1990. 
John K. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley, 1994. 
A. Peterson and S. Cohen. A context analysis of the movement con­
trol domain for the army tactical command and control system (atccs). 
Technical Report CMU /SEI-91-SR-3, Software Engineering Institute, 
Carnegie Mellon University, 1991. 
A. S. Peterson. Features-the heart of object integration. In Sitaraman 
[Sit96], pages 227-228. 1996. 
Ruben Prieto-Diaz and Peter Freeman. Classifying software for reusabil­
ity. IEEE Software, pages 6-16, January 1987. 
Ruben Prieto-Diaz and William B. Frakes. Advances in Software reuse. 
IEEE Computer Society Press, 1993. 
Matthew Pittman. Managing reuse: Exposing the hidden agenda. IEEE 
Software, 10(1):46-47, January 1993. 
Gustav Pomberger. Software Engineering and Modula-2. Prentice Hall 
International, 1984. 
Jeffrey S. Poulin. Measuring reuse. In WISR 5 [WIS92]. 1992. 
Jeffrey S. Poulin. Populating software repositories: Incentives and 
domain-specific software. The Journal of Systems and Software, 
30(3):187-199, September 1995. 
Roger S. Pressman. Software Engineering: A Practitioner's Approach. 
McGraw-Hill, 3rd edition, 1992. 



www.manaraa.com

248 References 

[Pre95] Wolfgang Pree. Design Patterns for Object-Oriented Software Develop­
ment. Addison-Wesley, 1995. 

[Pri87] Ruben Prieto-Diazo Domain analysis for reusability. In COMPSAC 87, 
pages 225-234. Tokyo, Japan, 1987. 

[Pri89] Ruben Prieto-Diazo Classification of reusable modules. In Biggerstaff 
and Pedis [BP89a], pages 99-123. 1989. 

[Pri90] Ruben Prieto-Diazo Domain analysis: An introduction. ACM SIGSOFT 
Software Engineering Notes, 15(2):47-54, April 1990. 

[Pri91a] Ruben Prieto-Diazo A domain analysis methodology. In Workshop on 
Domain Modeling for Software Engineering (ICSE13), 1991. Position 
Abstract. 

[Pri91b] Ruben Prieto-Diazo Implementing faceted classification for software 
reuse. Communications of the ACM, 34(5):88-97, May 1991. 

[Pri91c] Ruben Prieto-Diazo Making software reuse work: An implementation 

[Pri93a] 

[Pri93b] 

[Pri94] 

[PY93] 

[QW93] 

[Ram94] 

[Rei95a] 

[Rei95b] 

[Ren94] 

[RGI94] 

[RGI95] 

[RGM94] 

[RW92] 

[Sam94] 

model. ACM SIGSOFT Software Engineering Notes, 16(3):61-68, July 
1991. 
Ruben Prieto-Diazo Software Reuse: From Concepts to Implementation. 
Tutorial: International Symposium on Applied Computing (ISAC), 1993. 
Ruben Prieto-Diazo Status report: Software reusability. IEEE Software, 
10(3):61-66, May 1993. 
Ruben Prieto-Diazo Historical overview. In Schiifer et al. [SPM94], chap­
ter 1, pages 1-16. 1994. 
Sukesh Patel, Alan Stein, Paul Cohen, Rich Baxter, and Steve Sherman. 
Certification of reusable software components. In WISR 5 [WIS92]. 
1992. 
Jeffrey S. Poulin and Kathryn P. Yglesias. Experiences with a faceted 
classification scheme in a large reusable software library (RSL). In Seven-
teenth Annual International Computer Software and Applications Con­
ference, pages 90-99. Phoenix, AZ, November 3-5 1993. 
John S. Quarterman and Susanne Wilhelm. UNIX, POSIX, and Open 
Systems. Addison-Wesley, 1993. 
Norman Ramsey. Literate programming simplified. IEEE Software, 
11(5):97-105, September 1994. 
Steven P. Reiss. The FIELD Programming Environment: A Friendly In­
tegrated Environment for Learning and Development. Kluwer Academic 
Publishers, 1995. 
Steven P. Reiss. Fragments: A mechanism for low cost data integration. 
Technical report, Brown University, Dept. of Computer Science, 1995. 
John Rennie. OpenDoc, IBM and Apple's pitfall for mega-applications. 
Scientific American, pages 130-131, October 1994. 
Maria del Rosario Girardi and Bertrand Ibrahim. Automatic indexing 
of software artifacts. In Frakes [Fra94a], pages 24-32. 1994. 
Maria del Rosario Girardi and Bertrand Ibrahim. Using English to re­
trieve software. The Journal of Systems and Software, 30(3):249-270, 
September 1995. 
J. Rymer, M. Guttman, and J. Matthews. Microsoft OLE 2.0 and the 
road to Cairo; how object linking and embedding will lead to distributed 
object computing. Distributed Computing Monitor, 9(1):3(24), January 
1994. 
M. Reiser and N. Wirth. Programming in Oberon: Steps beyond Pascal 
and Modula. Addison-Wesley, 1992. 
Johannes Sametinger. Object-oriented documentation. ACM Journal of 
Systems Documentation, 18(1):3-14, January 1994. 



www.manaraa.com

[Sam96] 

[SB93] 

[SeI89] 

[SG94] 

[Sha94] 

[Sha95] 

[Sit96] 

[Smo96] 
[Som92] 

[SPM94] 

[SS92] 

[Sta86] 
[STA93] 

[Str94] 

[Sun96] 

[Szy95] 

[Taf87] 

[Tai93] 

[TBSS93] 

[TG93] 

[Tra88a] 

References 249 

Johannes Sametinger. Reuse documentation and documentation reuse. 
In Mitchell et al. [MNM96], pages 17-28. 1996. 
Vivek Singhal and Don Batory. P++: A language for large-scale reusable 
software components. In WISR 6 [WIS93]. 1993. 
Richard W. Selby. Quantitative studies of software reuse. In Biggerstaff 
and Perlis [BP89bJ, pages 213-233. 1989. 
Mary Shaw and David Garlan. Characteristics of higher-level languages 
for software architecture. Technical Report CMU-CS-94-210, CMU /SEI-
94-TR-23, Software Engineering Institute, Carnegie Mellon University, 
December 1994. 
Mary Shaw. Procedure calls are the assembly language of software 
interconnection: Connectors deserve first-class status. Technical Re­
port CMU /SEI-94-TR-2, ADA281026, Software Engineering Institute, 
Carnegie Mellon University, 1994. 
Mary Shaw. Architectural issues in software reuse: It's not just the func­
tionality, it's the packaging. In Mansur Samadzadeh and Mansour Zand, 
editors, SSR '95: ACM SIGSOFT Symposium on Software Reusability, 
pages 3-6. ACM Press, Seattle, WA, April 28-30, 1995. 1995. 
Murali Sitaraman, editor. 4th International Conference on Software 
Reuse, Orlando, Florida, April 23-26, 1996. IEEE Computer Society 
Press. 
Smolowe. Out-of-control tower. TIME, 147(8):52-53, February 19 1996. 
Ian Sommerville. Software Engineering. Addison-Wesley, 4th edition, 
1992. 
Wilhelm Schafer, Ruben Prieto-Diaz, and Masao Matsumoto, editors. 
Software Reusability. Ellis Horwood, New York, 1994. 
Johannes Sametinger and Alois Stritzinger. Exploratory software devel­
opment with class libraries. In Shifting Paradigms in Software Engineer­
ing. Springer Verlag, Klagenfurt, Austria, 1992. 
R. Stallman. GNU Emacs Manual. 4th edition, February 1986. V17. 
STARS. Application engineering with domain-specific reuse. Technical 
Report STARS-AC-04102B/001/00, Informal Technical Report for the 
STARS Program, (Course Description), June 1993. 
Bjarne Stroustrup. The Design and Evolution of c++. Addison-Wesley, 
1994. 
Sun Microsystems. Java Beans: A component architecture for Java. 
December 1996. 
http://splash.javasoft.com/beans/WhitePaper.html. 

Clemens Szyperski. Component-oriented programming: A refined varia­
tion on object-oriented programming. The Oberon Tribune, 1(2):1, 4-6, 
December 1995. 
Sven Tafvelin, editor. Ada Components: Libraries and Tools, Proceed­
ings of the Ada-Europe International Conference, Stockholm, May 26-28, 
1987. Cambridge University Press. 
Antero Taivalsaari. A Critical View of Inheritance and Reusability in 
Object-oriented Programming. PhD thesis, University of Jyviiskyla, Fin­
land, 1993. 
Jeff Thomas, Don Batory, Vivek Singhal, and Marty Sirkin. A scalable 
approach to software libraries. In WISR 6 [WIS93]. 1993. 
J. R. Tirso and H. Gregorius. Management of reuse at IBM. IBM 
Systems Journal, 32(4):612-615, 1993. 
Will Tracz. Software reuse: Motivators and inhibitors. In Tutorial: Soft­
ware Reuse: Emerging Technology [Tra88b], pages 62-67. 1987. 



www.manaraa.com

250 References 

[Tra88b] 

[Tra94] 

[Tra95] 

[Uma93] 

[VB96] 

[VK89] 

[Wan94] 

[Was94] 

[Weg83] 
[Weg89] 

[Weg93] 

[Weg95] 
[Weg96] 

[WG82] 

[WIS91] 

[WIS92] 

[WIS93] 

[WIS95] 

[WR94] 

[Yoc89] 

[YR95] 

[ZaI96] 

[ZS95] 

Will Tracz, editor. Tutorial: Software Reuse: Emerging Technology. 
IEEE Computer Society Press, 1988. 
Will Tracz. Software reuse myths revisited. In ICSE 16 [ICS94J, pages 
271-272. 1994. 
Will Tracz. Confessions of a Used Program Salesman: Instituionalizing 
Software Reuse. Addison-Wesley, 1995. 
Amjad Umar. Distributed Computing: A Practical Synthesis. Prentice 
Hall, 1993. 
Vijay K. Vaishnavi and Rajendra K. Bandi. Measuring reuse. Object 
Magazine, 6(2):53-57, April 1996. 
Dennis M. Volpano and Richard B. Kieburtz. The template approach to 
software reuse. In Biggerstaff and Perlis [BP89aJ, pages 247-255. 1989. 
Paul S. Wang. C++ with Object-Oriented Programming. POWs Pub­
lishing Company, 1994. 
Michael Wasmund. Reuse facts and myths. In ICSE 16 [ICS94], page 
273. 1994. 
Peter Wegner. Varieties ofreusability. In Freeman [Fre87b], pages 30-44. 
Peter Wegner. Capital-intensive software technology. In Biggerstaff and 
Perlis [BP89a], pages 43-97. 1989. 
Peter Wegner. Towards component-based software technology. Technical 
Report No. CS-93-11, Brown University, 1993. 
Peter Wegner. Interoperability. December 1995. Short Article. 
Peter Wegner. Foundations of interactive computing. Technical Report 
CS-96-01, Brown University, 1996. 
Anthony Wasserman and S. Gutz. The future of programming. Com­
munications of the ACM, 25(3):201, March 1982. 
WISR 4: 4th Workshop on Institutionalizing Software Reuse, Reston, 
VA, November 18-22, 1991. 
ftp://gandalf.umcs.maine.edu/pub/WISR/wisr4/. 
WISR 5: 5th Workshop on Institutionalizing Software Reuse, California, 
October 1992. 
ftp:/ / gandalf.umcs.maine.edu/pub/WISR/wisr5/. 
WISR 6: 6th Workshop on Institutionalizing Software Reuse, New York, 
November 1993. 
ftp:/ / gandalf. umcs.maine.edu/pub/WISR/wisr6/. 
WISR 7: 7th Workshop on Institutionalizing Software Reuse, Illinois, 
August 1995. 
ftp://gandalf.umcs.maine.edu/pub/WISR/wisr7/. 
Claes Wohlin and Per Runeson. Certification of software components. 
IEEE Transactions on Software Engineering, 20(6):494-499, June 1994. 
E. R. Yoches. Legal protection for computer software. Communications 
of the ACM, 32(2):169-171, February 1989. 
Aarne H. Yla-Rotiala. How to convince the management? In WISR 7 
[WIS95]. 1995. 
N.S. Zalman. Making the method fit: An industrial experience in adopt­
ing feature-oriented domain analysis (FODA). In Sitaraman [Sit96], 
pages 233-235. 1996. 
Mansour Zand and Mansur Samadzadeh. Software reuse: Current status 
and trends (guest editor's corner). The Journal of Systems and Software, 
30(3):167-170, September 1995. 



www.manaraa.com

Glossary 

Ad-hoc reuse 
practice of reuse in an informal way without a reuse strategy and without 
organizational support for reuse 
- also called individual reuse, opportunistic reuse 
- contrast to institutionalized reuse, planned reuse, systematic reuse 
- compare with centralized reuse, domain-based reuse, repository-based reuse 
- see Section 4.3.1 (page 41), Section 4.3 (page 40) 

Application engineering 
software engineering with systematic reuse of components and domain 
knowledge 
- compare with component engineering, domain engineering 
- see Chapter 15 (page 185) 

Application group 
organizational unit responsible for the creation of applications (mainly 
component consumers performing application engineering tasks) 
- compare with component group, domain group 
- see Section 4.3.2 (page 41) 

As-is reuse 
reusing components without modifying them 
- contrast to reuse by adaptation 
- compare with black-box reuse, white-box reuse 
- see Section 3.5 (page 28) 

Black-box reuse 
reusing components without seeing, knowing or modifying any of their 
internals 
- contrast to white-box reuse 
- compare with glass-box reuse, grey-box reuse 
- see Section 3.5 (page 28) 

Centralized reuse 
reuse with a repository that is accessed by various application groups and 
is administered by a component group 



www.manaraa.com

252 Glossary 

- compare with ad-hoc reuse, domain-based reuse, repository-based reuse 
- see Section 4.3 (page 40) 

Coarse-grained components 
large-size components like subsystems and applications, e.g., databases 
- contrast to fine-grained components 
- see Section 9.2.2 (page 123) 

Coarse-grained reuse 
reuse of coarse-grained components 

- contrast to fine-grained reuse 

Code scavenging 
copying and modifying blocks of source code from an existing system 
- compare with design scavenging 
- see Section 3.4.2 (page 24) 

Component 
see reusable software component 

Component adaptation 
modifications as planned by component developers (e.g., parameteriza­
tion) and/or as supported by component technology (e.g., inheritance) 
- compare with component modification 
- see Section 15.1.2 (page 187) 

Component certification 
ensuring that a component adheres to a specific set of quality guidelines 

- see Section 14.3 (page 174) 

Component classification 
grouping of similar components and attaching search information which 
can be used for component retrieval 
- compare with component taxonomy 
- see Section 14.5 (page 179) 

Component composition 
the process of constructing software systems by interconnecting compo­
nents through well-defined ways of interaction and communication 

- compare with component interoperation 
- see Section 7.1 (page 83) 

Component consumer 
individual or group with a primary responsibility to reuse available com­
ponents 
- contrast to component producer 
- see Section 4.3.3 (page 45) 



www.manaraa.com

Glossary 253 

Component granularity 
the size of components, mainly classified in fine-grained components and 
coarse-grained components 

- see Section 9.2.2 (page 123) 

Component engineering 
software development for reuse 

- compare with application engineering, domain engineering 
- see Chapter 14 (page 171) 

Component group 
organizational unit responsible for a repository of components (mainly 
component producers performing component engineering tasks) 

- compare with application group, domain group 
- see Section 4.3.2 (page 41) 

Component interoperation 
communication and cooperation of components despite differences in lan­
guage, interfaces and platforms 
- compare with component composition 
- see Section 7.2 (page 98) 

Component library 
see repository 

Component modification 
modifications not planned by component developers or supported by com­
ponent technology 
- compare with component adaptation 
- see Section 15.1.2 (page 187) 

Component platform 
additional software a component requires for its reuse (e.g., operating 
system, windows system, compiler, function library) 
- see Section 6.3 (page 76) 

Component producer 
individual or group with a primary responsibility to create reusable com­
ponents 

- contrast to component consumer 
- compare with lone producer, nested producer, pool producer, team producer 
- see Section 4.3.3 (page 45) 

Component repository 
see repository 



www.manaraa.com

254 Glossary 

Component taxonomy 
a general classification of components (as opposed to the classification of 
particular components) 

- compare with component classification 
- see Chapter 9 (page 11 7) 

Compositional reuse 
reuse of components which ideally remain unmodified and become part 
of the system to be composed 
- compare with generative reuse 
- see Section 3.4.2 (page 24) 

Copyright protection 
protection of software itself, but not any underlying ideas and principles 
(most common form of software protection) 

- compare with patent protection, trade secret protection 
- see Section 4.1 (page 38) 

Design pattern 
systematic naming, motivation and explanation of a general design that 
addresses a recurring design problem in object-oriented systems 
- see Section 3.6.6 (page 34) 

Design scavenging 
copying large blocks of code, deleting many of the internal details, but 
retaining the global template of the design 

- compare with Code scavenging 
- see Section 3.4.2 (page 24) 

Domain 
area of activity or knowledge containing applications that share common 
capabilities and data 
- see Chapter 13 (page 159) 

Domain analysis 
identifying, collecting, organizing and representing relevant information 
in a domain 
- see Section 13.1 (page 160) 

Domain-based reuse 
reuse with repositories for different domains that are accessed by various 
application groups and administered by domain groups 

- compare with ad-hoc reuse, centralized reuse, repository-based reuse 
- see Section 4.3 (page 40) 



www.manaraa.com

Glossary 255 

Domain boundary 
defines a domain's scope, i.e., what components, features and relation­
ships belong to a domain 
- see Section 13.2 (page 163) 

Domain engineering 
identifying candidate domains and performing domain analysis and do­
main implementation 
- compare with application engineering, component engineering 
- see Chapter 13 (page 159) 

Domain expert 
experienced person working and/or developing software in a certain do­
main (source of knowledge for domain analysis) 
- see page 164 (Section 13.2.1) 

Domain group 
component group responsible for components in a certain domain (mainly 
component producers for a specific domain performing domain engineer­
ing and component engineering tasks) 
- compare with application group, component group 
- see Section 4.3.2 (page 41) 

Domain implementation 
building components using domain analysis products (domain models, 
domain languages, domain taxonomies, etc.) 
- see Section 13.5 (page 168) 

Domain model 
identification of objects, operations and relationships that are likely to 
occur in more than one application and characterize applications in a 
domain 
- see Section 13.1.2 (page 161) 

Domain-specific reuse 
see vertical reuse 

External reuse 
reuse of components which were originally written for other software sys­
tems 
- contrast to internal reuse 
- see Section 3.3 (page 23) 

Fine-grained components 
small-size components like functions, modules and classes, e.g., input/ 
output functions, file access modules, etc. 
- contrast to coarse-grained components 



www.manaraa.com

256 Glossary 

- see Section 9.2.2 (page 123) 

Fine-grained reuse 
reuse of fine-grained components 
- contrast to coarse-grained reuse 

General-purpose reuse, general reuse 
see horizontal reuse 

Generative reuse 
reuse of a tool or generator that takes specifications as input and gener­
ates programs as output 
- compare with compositional reuse 
- see Section 3.4.3 (page 26) 

Glass-box reuse 
reusing components by examination of both their internal structures and 
external interfaces, but not changing internals 
- compare with black-box reuse, grey-box reuse, white-box reuse 
- see Section 3.5 (page 28) 

Grey-box reuse 
reuse of components by applying only minor changes to them 
- compare with black-box reuse, glass-box reuse, white-box reuse 
- see Section 3.5 (page 28) 

Horizontal domain 
a domain addressing particular features across applications 
- compare with vertical domain 
- see page 160 (Section 13.1) 

Horizontal reuse 
reuse of components across different domains 
- also called general-purpose reuse, general reuse 
- compare with vertical reuse, domain-specific reuse 
- see Section 3.3 (page 23) 

Individual reuse 
see ad-hoc reuse 

Initial investments 
investments needed in order to install a reuse program, including costs 
that do not directly support the completion of primary development goals 
but to make components of this development effort more reusable 
- see Section 4.2.1 (page 40) 

Institutionalized reuse 
see systematic reuse 



www.manaraa.com

Glossary 257 

Internal reuse 
multiple reuse of components within the software system for which they 
were originally written 

- contrast to external reuse 
- see Section 3.3 (page 23) 

Large-scale reuse 
systematic reuse of coarse-grained components 

- contrast to small-scale reuse 
- see Section 3.3 (page 23) 

Lone producer 
a single individual that handles the reuse needs of several component 
consumers (application groups) 

- compare with component producer, nested producer, pool producer, team pro­
ducer 

- see Section 4.3 (page 40) 

Nested producer 
individual members of application groups that handle reuse needs and 
produce components 

- compare with component producer, lone producer, pool producer, team pro­
ducer 

- see Section 4.3 (page 40) 

Open component 
component that has dependencies on open platforms only 

- see Section 6.3.3 (page 80) 

Open platform 
see open system 

Open system 
vendor-transparent platforms in which users can mix and match hard­
ware, software and networks from various vendors 
- see Section 6.3.3 (page 80) 

Opportunistic reuse 
see ad-hoc reuse 

Organized reuse 
see systematic reuse 

Patent protection 
protection of technical inventions that are new and involve inventive steps 
- compare with copyright protection, trade secret protection 
- see Section 4.1 (page 38) 



www.manaraa.com

258 Glossary 

Planned reuse 
see systematic reuse 

Pool producer 
two or more collaborating groups that handle reuse needs and produce 
components 

- compare with component producer, lone producer, nested producer, team pro­
ducer 

- see Section 4.3 (page 40) 

Portability 
ease with which a component can be transferred from one computer sys­
tem or environment to another 

- see Section 6.3.3 (page 80) 

Repository 
a database for the storage and retrieval of components, including their 
documentation and classification information 
- see Section 14.4 (page 178) 

Repository-based reuse 
a repository is accessed by various application groups; any components 
can be put into the repository; there is no control over their quality and 
usefulness 
- compare with ad-hoc reuse, centralized reuse, domain-based reuse 
- see Section 4.3 (page 40) 

Return on investment 
ratio of reuse savings to generalization costs 
- see page 50 (Section 4.4.3) 

Reusability 
the extent to which a component can be reused in multiple systems 

Reusable software component 
self-contained, clearly identifiable piece that describes and/or performs 
specific functions and has clear interfaces, appropriate documentation 
and a defined reuse status 
- see Section 6.1 (page 68) 

Reuse 
process of creating software systems from existing software components 
rather than building them from scratch 
- see Section 2.1 (page 9) 

Reuse by adaptation 
reusing components by first adapting them 



www.manaraa.com

- contrast to as-is reuse 
- compare with black-box reuse, white-box reuse 
- see Section 3.5 (page 28) 

Reuse effectiveness 
ratio of reuse benefits to reuse costs 
- compare with reuse maturity 
- see page 52 (Section 4.4.4) 

Reuse efficiency 

Glossary 259 

ratio of the percentage of exploited reuse opportunities to the percentage 
of intended reuse opportunities 
- compare with reuse maturity 
- see page 51 (Section 4.4.4) 

Reuse intention 
defines how components are used, e.g., black-box reuse/white-box reuse, 
as-is reuse/reuse by adaptation 
- see Section 3.5 (page 28) 

Reuse level 
ratio of reused components (their lines of code) to the total components 
of a software system (total amount of code) 
- see page 48 (Section 4.4.1) 

Reuse library 
see repository 

Reuse maturity 
indication of how effective and systematic an organization is at reuse 
- compare with reuse effectiveness, reuse efficiency, reuse proficiency 
- see Section 4.3.4 (page 47) 

Reuse maturity model 
model to assess reuse maturity 

- see Section 4.3.4 (page 47) 

Reuse mode 
defines how reuse is conducted, e.g., ad-hoc reuse/planned reuse, oppor­
tunistic reuse/ systematic reuse 

- see Section 4.3.1 (page 41) 

Reuse proficiency 
ratio of actual reuse to potential reuse, i.e., ratio of the percentage of 
exploited reuse opportunities to the percentage of potential reuse oppor­
tunities 
- compare with reuse maturity 



www.manaraa.com

260 Glossary 

- see page 51 (Section 4.4.4) 

Reuse product 
product to be reused, e.g., specification, design, architectures, source 
code, documentation 
- see Section 3.6 (page 31) 

Reuse scope 
form and extent of reuse, e.g., vertical reuse/horizontal reuse, internal 
reuse/ external reuse, small-scale reuse/large-scale reuse 
- see Section 3.3 (page 23) 

Reuse substance 
the essence of reused items, e.g., ideas, concepts, components, procedures, 
skills 

- see Section 3.2 (page 22) 

Reuse technique 
the approach to implement reuse, e.g., compositional reuse/generative 
reuse 
- see Section 3.4 (page 24) 

Search effectiveness 
effectiveness of component search, measured by search recall and search 
precision 
- compare with search precision, search recall 
- see Section 14.5.7 (page 183) 

Search precision 
ratio of relevant components retrieved to the total number of components 
retrieved 
- compare with search effectiveness, search recall 
- see Section 14.5.7 (page 183) 

Search recall 
ratio of the number of relevant components retrieved to the number of 
relevant components in the repository 
- compare with search effectiveness, search precision 
- see Section 14.5.7 (page 183) 

Small-scale reuse 
ad-hoc reuse of fine-grained components 

- contrast to large-scale reuse 
- see Section 3.3 (page 23) 

Software component 
see reusable software component 



www.manaraa.com

Glossary 261 

Software engineering 
the cost-effective production of high-quality software systems 
- compare with application engineering 
- see Chapter 11 (page 143) 

Software repository 
see repository 

Software reuse 
see reuse 

Systematic reuse 
reuse based on a formal process model 
- also called institutionalized reuse, organized reuse, planned reuse 
- contrast to ad-hoc reuse, individual reuse, opportunistic reuse 
- see Section 4.3.1 (page 41) 

Team producer 
groups of component producers interacting with groups of component con­
sumers 

- compare with component producer, lone producer, nested producer, pool pro­
ducer 

- see Section 4.3 (page 40) 

Trade secret protection 
protection of the know-how that is embodied in software 
- compare with copyright protection, patent protection 
- see Section 4.1 (page 38) 

Vertical domain 
a domain addressing all levels of a single application area 
- compare with horizontal domain 
- see page 160 (Section 13.1) 

Vertical reuse 
reuse of components in a specific domain 

- also called domain-specific reuse 
- compare with horizontal reuse, general-purpose reuse 
- see Section 3.3 (page 23) 

White-box reuse 
reusing components through examination and use of both their external 
interfaces and their internal structures 
- contrast to black-box reuse 
- compare with glass-box reuse, grey-box reuse 
- see Section 3.5 (page 28) 



www.manaraa.com

Index 

A 
abstract machine, 146 
abstraction, 24 
acceptance test, 147 
ad-hoc model, 43 
Ada, 28, 70, 77, 84, 87, 90,91,122,123, 

126, 127, 165, 173 
adaptability, 132, 146 
adaptive maintenance, 148 
adding functionality, 188 
Adobe, 94, 135 
air traffic control system, 4, 240 
algorithm, 22, 31-34 
Apple, 94, 104, 135 
applets, 132, 133, 138-140 
application, 35 
- component application, 95-96 
- compound application, 119 
- mega-application, 94, 95 
- monolithic application, 95, 135 
application engineering, 44, 146, 158, 

161, 168, 185-193, 251 
application framework, 33-34, 69, 79, 

97,110,113,174,225 
application generator, 26 
application group, 42-45, 157, 185, 251 
application use, 74 
Arango, Guillermo, 163, 166, 169 
Archie, 182 
architecture model, 111, 162, 169 
architecture modeling, 167-169 
assertion, 114 
asset manager, 47 
atomic type, 122 
attribute-value classification, 181-183 
automatic indexing, 182 

B 
backup process, 114 
Bandi, Rajendra, 52 
Banker, Rajiv, 178 

bankruptcy, 62 
Bardo, Tim, 12 
Basic, 130 
Basili, Victor, 10 
batch processing, 72 
Batory, Don, 26, 89 
Bauer, Dorothea, 12 
Bell, Paula, 201 
benchmarks, 177 
Berard, E.V., 122 
Biggerstaff, Ted, 28, 239 
black-box test, 148 
Blum, Bruce, 149 
Boehm, Barry, 61, 144, 157, 188, 190 
Booch, Grady, 70, 90, 91, 122, 123, 146 
Booch's taxonomy, 122-123 
boolean expression, 114 
bottom-up test, 148 
bounded pipes, 133 
Braun, Christine, 10, 14, 15, 56, 161, 

172,206 

c 
C, 28, 32, 50, 75, 85, 86, 90, 131, 132, 

135, 136, 139, 140, 165, 20~ 213 
C++, 28, 77, 79, 85, 88-91, 130-133, 

136, 139, 175, 205-207, 213, 230 
Card, Dave, 18 
Celsius Technology, 15 
Cheatham Jr, Thomas E., 27 
Chester, Rowena, 70, 161, 189 
Childs, Bart, 49, 212, 214, 216, 220, 

223, 232 
class library, 32, 79, 225 
Cleaveland, J., 162 
Coad, Peter, 34 
CoCoMo, 144 
code scavenging, 25, 252 
Cohen, Sholom, 168 
cohesion, 34, 146 
Comer, Ed, 18 



www.manaraa.com

264 Index 

common object request broker 
architecture, 93 

communication, 83 
communication channel, 114 
compatibility 
- backward compatibility, 72 
- plug compatibility, 88 
compiler, 76, 77, 79, 82 
component, 258 
- active component, 84, 124-127 
- architecture-level component, 124 
- coarse-grained component, 124, 252 
- code-level component, 124 
- custom-made component, 173 
- data structure component, 122 
- definition, 68 
- design-level component, 124 
- domain-specific component, 162 
- fine-grained component, 124, 255 
- generru component, 124, 167 
- general-purpose component, 162, 178 
- generalized component, 174 
- generic component, 126 
- implementation component, 123 
- lean component, 94 
- legacy component, 17 
- library component, 126 
- multilingual component, 104 
- off-the-shelf components, 10 
- open component, 81, 257 
- parameterizable component, 167 
- passive component, 84, 124-127 
- proactive component, 109 
- product-specific component, 162 
- reactive component, 109 
- reusable component, 162 
- secondary component, 126 
- self-contained component, 68 
- server component, 93 
- service component, 92 
- source code component, 122 
- special-purpose component, 178 
- specific component, 124 
- specification component, 123 
- third-party component, 61-62 

tool-selectable component, 126 
- user-selectable component, 126 
component abstraction, 123-124 
component adaptation, 61, 113-115, 

140, 188, 207 
component adapter, 103 
component applicability, 108 
component attributes, 120 

component certification, 174-177, 252 
component classification, 179-184, 206, 

252 
- comparison, 183-184 
component cohesion, 110, 175 
component completeness, 108 
component composability, 80 
component composition, see composi-

tion 
component concurrency, 110-111, 114, 

115, 140 
component configurability, 174 
component consumer, 252 
component converter, 104 
component coupling, 110, 175 
component definition, 68-71 
component dependencies, 78-80 
component development, 171-173 
component distribution, 111-112, 114, 

115, 140 
component documentation, see 

documentation 
component efficiency, 188 
component engineering, 44, 146, 158, 

168,171-184,253 
component forms, 122 
component functionality, 69, 107-108, 

114, 115, 140, 207 
component generality, 108 
component generalization, 173-174, 188 
component granularity, 123-124, 253 
component group, 43-45, 47, 157, 185, 

191, 253 
component identification, 69 
component integration, 17, 81 
component interaction, 71, 110, 114, 

115, 140 
component interactivity, 108-109 
component interconnection, see 

interconnection 
component interface, see interface 
component interoperability, see 

interoperability 
component interoperation, see 

interoperation 
component isolation, 174 
component library, 253 
component market, 40, 62, 173 
component modification, 17, 61, 103, 

187-188, 253 
component narrowing, 173 
component performance, 12, 134, 208 



www.manaraa.com

component platform, 76-81, 120, 207, 
253 

component plug, 84 
component portability, see portability 
component producer, 253 
component purpose, 123-124 
component quality, 11, 61, 113-115, 

140, 148, 176-177, 208 
component request broker, 92 
component retrieval, 17, 179 
component reusability, see reusability 
component reuse, 186-187 
component scope, 123-124 
component specification, 208 
component taxonomy, 117-128, 179, 

254 
component test, 147 
component widening, 173 
component wrapper, 103 
component-based life cycle, 188-191 
component-based system, 236 
component-oriented programming, 71 
component-oriented software develop-

ment, 106 
composite type, 122 
composition, 72, 83-105, 252 
- blackboard composition, 84 
- external composition, 84 
- functional composition, 84, 86-87, 

119 
- internal composition, 84 
- modular composition, 87, 119, 123 
- object model composition, 119 
- object-oriented composition, 87-88, 

104, 105, 119 
- open platform composition, 119 
- procedure-oriented composition, 104, 

105 
- specific platform composition, 119 
- subsystem composition, 88-89, 119 
- textual composition, 84-86, 91 
composition by extension, 84 
composition categories, 119 
composition languages, 106 
composition mismatch, 102-105 
composition platform, 78-79 
concurrency, 122, 127 
confidential information, 38 
Constantine Method, 172 
Constructive Cost Model, 144 
consumer, see producer 
context analysis, 166-169 
context model, 166, 168, 169 

Index 265 

control integration, 98-100 
Cooper, Jack, 10, 39 
copyright protection, 38, 254 
Corba, 77, 79, 92, 93, 95, 105 
coroutine, 86 
corrective maintenance, 148 
cost estimation, 144 
cost estimation model, 144 
cost modeling, 144 
costs 
- initial development costs, 173 
- maintenance costs, 13 
- reuse costs, 40, 57, 61 
- training costs, 13 
coupling, 34, 146 
custom control, 130 
CWeb,213 

D 
Dami, Laurent, 70, 83, 84 
data analysis, 145, 165 
data collection, 164-165 
data flow diagram, 167 
data flow machine, 111 
data flow model, 168, 169 
data integration, 98-100 
database, 71, 73, 78, 79, 118 
DOE, 74, 118, 266 
De Mey, Vicky, 84, 172 
deadlock, 114 
debugging, 148 
DEC, 137 
design, 145-146, 152 
- algorithmic design, 145 
- architectural design, 145 
- bottom-up design, 146 
- component design, 145 
- data structure design, 145 
- data-driven design, 172 
- function-oriented design, 172 
- interface design, 145 
- process-driven design, 172 
- top-down design, 146 
design for reuse, 146, 158, 223 
design pattern, 2, 34, 81, 124, 254 
design scavenging, 26, 254 
design with reuse, 146, 158 
development for reuse, 158, 172, 189 
development with reuse, 158, 172, 186, 

189 
Dewey decimal system, 180 
Di Felice, Paolino, 172 
distributed computing, 119 



www.manaraa.com

266 Index 

distribution, 127 
- distributed computing, 91-92 
- distributed objects, 88 
document 
- compound document, 118 
- compound documents, 92, 94-95, 119 
document analysis, 145 
documentation, 12, 13, 16, 35, 69, 149, 

197-201, 203-209 
- process documentation, 198, 200 
- reuse documentation, 203-209 
- reuse manual, 206-209 
- system documentation, 198-199, 209, 

215 
user documentation, 198-199 

documentation abstraction, 227-228 
documentation categories, 197-198 
documentation hierarchy, 231 
documentation inheritance, 227 
documentation readability, 228 
documentation reuse, 225-232 
documentation views, 229-230 
domain, 23, 254 
- broad domain, 159 
- horizontal domain, 160, 256 
- narrow domain, 159 
- peer domain, 167 
- subdomain, 159, 167 
- superdomain, 167 

vertical domain, 160, 261 
domain analysis, 47, 58, 160-163, 168, 

192, 254 
domain analysis activities, 163-165 
domain analysis benefits, 162-163 
domain analysis evaluation, 165 
domain analysis methods, 166-168 
domain analysis products, 161-162 
domain analyst, 47 
domain boundary, 163, 167, 255 
domain definition, 161, 163-164 
domain depth, 163 
domain engineer, 47 
domain engineering, 44, 158-169, 255 
domain experience, 162 
domain expert, 47, 161, 164, 255 
domain expertise, 167 
domain group, 44, 47, 157, 255 
domain implementation, 168, 255 
domain knowledge, 162, 164, 169, 192 
domain language, 162 
domain maturity, 192 
domain model, 161, 192, 255 
domain modeling, 167-169 

domain preparation, 163-164 
domain requirements model, 161 
domain scope, 159 
domain standards, 162 
domain taxonomy, 162 
domain technology, 169 
domain width, 163 
Draco, 27 
Dunn, Michael F., 177 
Dusink, Liesbeth, 124, 126 
dynamic data exchange (nnE), 74 
dynamic invocation interface, 93 
dynamic test, 147 

E 
economic issues, 39-40 
efficiency, 11 
Eiffel, 61, 88, 91, 113, 139 
electrical appliance, 102 
Elliot, Michael, 214 
Emacs, 35, 75 
endless loop, 108 
entity relationship model, 167-169 
entity relationship modeling, 169 
enumerated classification, 180, 183 
event-driven programming, 130 
exception handling, 114 
execution platform, 78-79 
expect, 73 
expert services model, 43 
expert system, 23 
expertise sharing, 14 
exploratory model, 153-155 

F 
faceted classification, 180-181, 183 
Fafchamps, Danielle, 45, 46, 53 
fault tolerance, 114 
Favaro, John, 52 
feasibility study, 145 
feature analysis, 167 
feature model, 168, 169 
Field, 129, 136-140 
filters/pipes, 24, 29, 72, 73, 78, 84, 101, 

103, 113, 118, 126, 129, 133-135, 
137-139 

finite state machine model, 168, 169 
Flexible Software Factory (FSF) 

Adoption Strategy, 41 
Foda, 159, 166, 168, 169 
formal inspection, 176, 177 
formal verification, 177 
Frakes, William, 182, 183, 237 



www.manaraa.com

FrameMaker, 129, 135, 136, 138-140 
Framework Assisted Goal Question 

Metric, 52 
free text classification, 179-180 
Freeman, Peter, 5, 10, 23, 181 
Fujitsu, 14 
function library, 32 
functional analysis, 167 
functional requirements, 145 
Fuse, 137 
FWeb,213 

G 
Gamma, Erich, 34 
garbage collection, 122 
Garlan, David, 103 
generic pointers, 90 
Gen Voca, 85, 89 
Goldberg, Adele, 30, 42, 43, 52, 53, 56, 

59, 60, 149 
granularity, 122 
Griss, Martin, 15, 47, 52, 56, 58, 61, 

179 
GTE, 14,60 
Gutz, S., 67 
Godel, Kurt, 237 

H 
hardware, 78, 80 
Henderson-Sellers, Brian, 50 
Hess, James A., 161, 166, 168 
Hewlett-Packard, 14, 45, 46, 52, 53, 137 
Holibaugh, Robert, 70 
Hooper, James, 70, 161, 189 
Horner, Ken, 15 
Horowitz, Ellis, 26 
HotJava, 132 
HTML,213 
Hudson, Anita, 47 
hypertext, 214-216 

I 
IBM, 4, 14, 85, 94, 184 
IEEE,49 
implementation, 146-147, 152 
independent, 71 
indexing vocabularies, 182-183 
information filtering, 229 
information hiding, 71 
information sources, 161 
inheritance, 32, 34,113,127,174,226 
installation manual, 198 
integrated environment, 96-97 
integration test, 147 

Intel, 78 
interaction, 83 
interaction machine, 237 
interconcurrency, 111 
interconnection, 83, 100 
interface, 69, 71-76 

Index 267 

- API, 74, 75, 95, 135, 136, 138, 140 
- command language interface, 75-76 
- command-line user interface, 72-73 
- data interface, 72-73, 118 
- data interface levels, 118 
- interface types, 72 
- multiple interfaces, 72 
- programming interface, 72, 74-75, 

119 
- standard interface, 93 
- standardized interface, 92 
- user interface, 72-74, 97, 118 
- user interface levels, 118 
interface adaptation, 105 
interface bridging, 104-105 
interface definition language, 92-93, 

105 
interface repository, 93 
interface standardization, 105 
interface transformation language, 104 
Internet, 132, 133, 138, 140, 178, 182 
interoperability, 12, 98 
interoperability matrix, 101 
interoperation, 83, 98-102, 119, 253 
interoperation categories, 100-102 
interprocess communication, 78, 84 
interprocess protocol, 112 
intraconcurrency, 111 
introductory manual, 198 
investment 
- initial investment, 16, 40, 256 
- return on investment, 50, 56, 57, 164, 

258 
- reuse investment, 40 

J 
Jackson Method, 172 
Jackson Structured Programming, 146 
Java, 78-80,120,129, 131-133, 138-140 
JavaBeans, 133 
Jones, Capers, 15 
Joos, Rebecca, 56 

K 
van Katwijk, Jan, 124, 126 
Kain, J. Bradford, 71, 123-125 
Kang, Kyo, 189 



www.manaraa.com

268 Index 

Karlsson, Even-Andre, 42, 53, 163, 173, 
206 

keyword classification, 179-180, 183 
Kiczales, Gregor, 239 
kitchen sink approach, 27 
Knight, John C., 177 
know-how, 38 
Knuth, Donald E., 2, 31, 211-213, 215, 

218 
Koltun, Philip, 47 
Konstantas, Dimitri, 104 
Krommes, John, 213 
Krueger, Charles, 10, 24, 206 

L 
late binding, 71 
legacy code, 103 
legacy software, 240 
legal issues, 16, 38-39, 62, 208 
Levy, Silvio, 213 
liability, 39 
librarian, 47 
library catalogs, 182 
Lim, Wayne, 10 
limits of component reuse, 237-239 
literate programming, 199, 211-216 
logical distribution, 112 
lone producer, 45, 257 

M 
Macintosh, 78, 79, 135 
macros, 85, 90 
maintenance, 148-149, 153, 226 
management, 143-144 
- project management, 15 
- sell reuse to management, 58 
management commitment, 58-59 
management support, 15, 17, 37, 57 
mapping dilemma, 239 
Margono, J., 122 
Miss Marple, 223 
McGregor, John D., 70, 81, 124 
McIlroy, Dough, 9, 10, 67 
measurement program, 52 
Merrit, Steven, 176 
message server, 136, 137 
MetaFont, 218-223 
MetaPost, 220-222 
Meyer, Bertrand, 206 
Microsoft, 94, 130, 135 
Mili, Hafedh, 11, 15, 56 
Minsky, Marvin, 98 
Mittermeir, Roland, 173 

Modula-2, 32, 88, 89 
modularity, 146 
module interconnection languages, 25 
module structure chart, 168, 169 
monolithic structure, 122 
monolithic system, 240 
Morrison, John, 62 
Motorola, 14, 104 
Mowbray, J. Thomas, 92 
multicomputer, 112 
multiple versions, 113 
multiprocessor, 112 
multiprogram, 111 

N 
N-version programming, 114 
NATO standards, 11, 71 
Navarro, James, 41 
NEC Software Engineering Laboratory, 

14 
Neighbors, James M., 239 
nested producer, 45, 257 
network, 112 
Nierstrasz, Oscar, 70, 83, 84, 106 
nondisclosure agreement, 38 
nonfunctional requirements, 145 
not-invented-here syndrome, 16, 19 
NoWeb, 213, 214, 216 

o 
Oberon, 89 
object management group, 92 
object model, 92-93, 97, 98, 105, 106, 

119, 131 
object request broker, 92, 93 
object-oriented programming, 71, 102, 

174, 225 
object-oriented technology, 17, 49, 113, 

131, 225 
OLE, 79, 94, 95, 131 
Omega, 70 
open component, 81, 257 
open platform, 97-98, 119, 257 
open system, 80-81, 240, 257 
OpenDoc, 70, 79, 94, 95, 207 
operating system, 72, 74, 76, 78-80, 82 
organizational structures, 16 
OSI standards, 81 
over-generalization, 174 

p 
P++, 89, 90, 113 
paradigm shift, 235-237 
paramerization, 119 



www.manaraa.com

parameterization, 89-91 
parameterized approach, 27 
partial failure, 114 
Pascal, 212 
patent protection, 38, 257 
perfective maintenance, 148 
performance, 132, 238 
performance inefficiencies, 173 
Peterson, A. Spencer, 168 
physical distribution, 112 
pipelines, 133 
pipes, see filters 
PL/I,32 
PL/S,85 
platform, 98 
platform categories, 78, 120 
platform dependencies, 78-80 
point-to-point message, 114 
pointer type, 122 
Hercule Poirot, 223 
Pole, Thomas, 182, 183 
polylithic structure, 122 
polymorphism, 71 
Pomberger, Gustav, 197-199 
pool producer, 46, 258 
portability, 11, 16, 76, 80, 110, 120, 

132, 258 
- user portability, 80 
Posix, 78, 81 
postcondition, 113, 114 
Poulin, Jeffrey, 59, 60, 181, 184 
precondition, 113, 114 
Pree, Wolfgang, 34 
Pressman, Roger S., 143, 149 
preventive maintenance, 148 
Prieto-Dfaz, Ruben, 10, 15, 22, 47, 56, 

161, 163, 181, 192 
problem analysis, 145 
process interaction model, 168, 169 
producer and consumer, 45-46 
product center model, 43 
productivity, 9-15 
program visualization, 129 
programming by example, 130 
programming guidelines, 175 
programming language, 77, 79 
programming system, 78 
project controlling, 144 
project estimating, 144 
project measuring, 144 
project planning, 143 
project scheduling, 144 
prototyping model, 155-156 

Index 269 

pseudo tty, 72, 73, 118, 137, 139 

Q 
quality, 11, 12, 14-16, 18, 69, 146 
quality assurance, 177 
quality control, 18 

R 
Ramsey, Norman, 213 
rapid prototyping, 13 
Raytheon Missile Systems, 14 
re-engineering, 17, 148, 188 
realm, 89, 113 
recovery block approach, 114 
redundant work, 12 
reference manual, 198 
Reiss, Steven, 96, 100, 136 
reliability, 11, 12, 16 
remote procedure call, 79, 82, 84, 87, 

88, 104 
removing functionality, 188 
repository, 69,175,178-179, 188, 191, 

192, 258 
- central repository, 178 
- domain-specific repository, 178 
- local repository, 178 
- reference repository, 178 
repository evaluation, 178 
requirements analysis, 152 
responsibility, 39 
reusability, 17, 108, 118, 174,258 
reusable software component, see 

component 
reuse 
- ad-hoc reuse, 22, 41-42, 47, 217, 251, 

259 
- architectural reuse, 47 
- as-is reuse, 22, 28, 251, 259 
- black-box reuse, 22, 29-30, 137, 215, 

238, 251, 259 
- centralized reuse, 43-44, 251 
- chaotic reuse, 47 
- coarse-grained reuse, 252 
- component reuse, 186-187 
- compositional reuse, 22, 24-26, 28, 

254,260 
- coordinated reuse, 47 
- definition, 10 
- design reuse, 88 
- documentation reuse, 225-232 
- domain-based reuse, 44, 254 
- domain-specific reuse, 22, 23, 160, 

255 



www.manaraa.com

270 Index 

- effective reuse, 149 
- external reuse, 22, 23, 49, 255, 260 
- fine-grained reuse, 256 
- garbage reuse, 18 
- general reuse, 256 
- general-purpose reuse, 22, 23, 256 
- generative reuse, 22, 26-28, 30, 239, 

256,260 
- glass-box reuse, 22, 30, 238, 256 
- grey-box reuse, 30, 256 
- horizontal reuse, 22, 23, 162, 256, 260 
- how to install reuse, 55-58 
- individual reuse, 22, 41, 256 
- ingrained reuse, 47 
- initial reuse, 47 
- institutionalized reuse, 22, 256 
- intercorporation reuse, 38 
- internal reuse, 22, 23, 49, 257, 260 
- large-scale reuse, 15, 22, 23, 33, 103, 

257, 260 
- monitored reuse, 47 
- opportunistic reuse, 22, 41, 257, 259 
- organizational reuse models, 41-44 
- organized reuse, 257 
- planned reuse, 22, 47, 258, 259 
- portable reuse, 47 
- repeatable reuse, 47 
- repository-based reuse, 42-43, 258 
- small-scale reuse, 22, 23, 260 
- systematic reuse, 11, 22, 37, 41, 47, 

120, 259, 261 
vertical reuse, 22, 23, 162, 260, 261 

- white-box reuse, 22, 29-30, 49, 50, 
13~ 188, 215, 216, 223, 238, 259, 261 

reuse adoption process, 41 
reuse and literate programming, 215 
reuse assessment, 56 
reuse benefits, 11-15, 18, 61 
reuse bribes, 60 
reuse by adaptation, 22, 28, 258, 259 
reuse consolidation, 58 
reuse costs, see costs 
reuse definition, 10 
reuse education, 61 
reuse effectiveness, 40, 51, 52, 259 
reuse efficiency, 51, 259 
reuse evaluation, 191 
reuse expansion, 58 
reuse experiment, 57 
reuse failure, 239 
reuse in the hallway, 42 
reuse incentives, 16, 60 
reuse initiation, 57 

reuse intention, 22, 28-30, 259 
reuse level, 48, 49, 259 
reuse library, 259 
reuse manager, 47 
reuse manual, 176, 211 
reuse maturity, 47, 51, 259 
reuse maturity levels, 48 
reuse maturity model, 47, 259 
reuse measurement, 48-52 
- case study, 220-223 
- industry example, 52 
- line and word runs, 49-50, 217-219 
reuse mode, 22, 41, 259 
reuse motivation, 10-11, 59-61 
reuse objectives, 56 
reuse obstacles, 15-18 
reuse organization, 40-47 
reuse percentage, 49, 50 
reuse potential, 117, 174 
reuse procedures, 15 
reuse product, 22, 31-35, 260 
reuse proficiency, 51, 259 
reuse risk, 18, 57, 61, 189, 190 
reuse scope, 22-23, 81, 260 
reuse spiral, 189-192 
reuse status, 69, 207 
reuse substance, 22-23, 260 
reuse team, 43 
reuse technique, 22, 24-28, 260 
reuse training, 61 
reuse-driven development, 185-186 
Richter, Charles, 28 
risk management, 61 
risks of liability, 39 
Rombach, Hans Dieter, 10 
Rosa, 182 
Rossak, Wilhelm, 173 
royalty payments, 59 
Rubin, Kenneth, 30, 42, 43, 52, 53, 56, 

59,60, 149 
Rumbaugh, James, 146 
run-time system, 76, 77, 80 
Runeson, Per, 177 

S 
safety, 71 
Samadzadeh, ~ansur, 53 
Sametinger, Johannes, 49, 220, 223, 

227,232 
search effectiveness, 184, 260 
search precision, 184, 260 
search recall, 184, 260 
security, 132 



www.manaraa.com

self-contained, 68, 71 
Setl, 27 
shared variables, 111 
Shaw, Mary, 103 
shell script, 76 
skeleton approach, 27 
small is beautiful, 238 
Smalltalk, 77-79, 88, 91, 238 
Sniff, 137 
SoftBench, 137 
SoITech, Inc., 14 
software architecture, 32-33 
software component, see component 
software crisis, 1, 5, 9, 236 
software design, 2, 33 
software engineering, 149, 261 
software evolution, 191-192 
software factory, 9 
software life cycle, 192 
Software Productivity Consortium, 41, 

47 
Software Productivity Metrics Working 

Group, 49 
software repository, see repository 
software reuse, see reuse 
Sommerville, Ian, 143, 149, 197, 198 
source code, 67, 69-72, 75-77, 80 
space, 122 
SparcWorks, 137 
specific platform, 80 
specification, 145, 152 
specification test, 147 
spiral model, 61, 156-157 
standards 
- documentation standards, 209 
- open system standards, 81 
- performance standards, 175 
- quality standards, 47 
- testing standards, 175 
static analysis, 176, 177 
static test, 147 
stepwise refinement, 86, 146 
stepwise refinement approach, 27 
structure, 122 
structure diagram, 167 
subroutine, 86 
subsystem, 34, 122 
Sun Microsystems, 131, 137 
supervisor process, 114 
supply and demand model, 43 
synchronization, 111 
system administrator manual, 198 
Szyperski, Clemens, 71 

T 
Taivalsaari, Antero, 18 
TakeFive, 137 
Tcl, 75, 77, 79 
team producer, 46, 261 
team size, 13 
templates, 90, 113 

Index 271 

testing, 115, 147-148, 152, 176, 177, 
208 

testing standards, see standards 
'lEX, 212, 213, 215, 218, 220-223 
thesaurus, 180, 183 
tightly coupled, 71 
time to market, 13 
tool, 122 
top-down design, 86 
top-down test, 148 
Tracz, Will, 10 
trade secret protection, 38, 261 
transformation-based system, 27 
transition system, 108 
Turing machine, 237 
twin life cycle, 158 
typed pipes, 134 

U 
understandability, 146 
unit of parallelism, 112 
Universal Defense Systems, 14 
Unix, 25, 26, 29, 72, 73, 75-78, 81, 84, 

97, 101, 103, 111, 113, 118, 126, 129, 
133-140, 160, 227 

usage modeling, 177 
user interaction, 110, 114, 115, 140 

V 
Vaishnavi, Vijay, 52 
variant, 113, 114 
vector computer, 111 
Veronica, 182 
virtual machine, 120, 132 
visual programming, 129 
VisuaiBasic, 78, 129-131, 138-140 
vocabulary 
- controlled vocabulary, 179, 182 
- standard vocabulary, 179 
- uncontrolled vocabulary, 182 

W 
WAIS, 182 
Walton, Paul, 52 
Wasmund, Michael, 60 
Wasserman, Anthony, 67 
waterfall model, 151-153, 157 



www.manaraa.com

272 Index 

weak-point analysis, 145 
VVeb, 212-214, 220 
VVegner, Peter, 24, 71, 104, 108, 127, 

128, 236, 237 
VVegner's taxonomy, 127-128 
white-box test, 148 
window system, 72, 76, 79, 80, 82 
VVindows, 78, 79, 130, 135 
VVohlin, Claes, 177 
VVorld-VVide-VVeb, 80, 95, 132 
wrapper, 137 
WYSIWYG,215 

X 
X/Open standards, 81 

y 
yellow pages, 178 
Yglesias, Kathryn, 181, 184 
Ylii.-Rotiala, Aarne, 59 

Z 
Zahavi, Ron, 92 
Zand, Mansour, 53 




